Skip to main content

Basal Ganglia

  • Chapter
  • First Online:
Clinical Neuroanatomy

Abstract

The basal ganglia are a group of closely connected cell masses, forming a continuum, extending from the telencephalon to the midbrain tegmentum (Sect. 11.2). This complex comprises the striatum (the nucleus caudatus and the putamen, largely separated by the internal capsule), the globus pallidus, the subthalamic nucleus and the substantia nigra. The output of the basal ganglia is aimed at the ventral anterior (VA) and ventrolateral (VL) thalamic nuclei or VA–VL complex (parts of the motor thalamus), the centromedian thalamic nucleus, the habenula, the pedunculopontine tegmental nucleus and the superior colliculus. In most non-primate mammals, the caudate and putamen are not clearly separated by an internal capsule and are known as the caudate–putamen complex or striatum. In primates, the globus pallidus consists of external or lateral and internal or medial segments. In other mammals, the entopeduncular nucleus is the homologue of the internal segment. The caudate nucleus, the putamen and the globus pallidus form the dorsal part of the striatal complex. The nucleus accumbens, both cytoarchitectonically and histochemically closely resembling the caudate nucleus and the putamen, and the greater part of the olfactory tubercle form the ventral striatum. The rostral part of the substantia innominata forms a ventral extension of the globus pallidus and is known as the ventral pallidum.

The cerebral cortex has extensive connections with the striatum that, via the globus pallidus and ventral thalamic nuclei, projects back to the motor, premotor and prefrontal areas of the cortex. Sensorimotor association and limbic cortical areas project in a segregated tripartite manner onto the striatum, and give rise to cortico-striato-pallido-thalamocortical circuits or re-entrant loops (Sect. 11.3). The putamen processes motor information in particular, the caudate nucleus cognitive information, and the nucleus accumbens emotional and motivational information. The Albin–DeLong model of basal ganglia circuitry involves two major striatal efferent pathways to the main output stations, known as the direct and indirect pathways, the first to facilitate or induce movements and the second to “brake” movements. Although challenged by the increasing complexity brought about by anatomical, physiological and clinical observations, this model still serves as a basis to explain pathophysiological mechanisms underlying motor disorders (Sect. 11.4). Many diseases of the basal ganglia have some disorder of movement as their primary symptom, ranging from an excess of (abnormal) involuntary movements such as in chorea to a poverty and slowness of movement as in Parkinson disease and Parkinson-plus disorders as illustrated in several Clinical cases (Sect. 11.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RD, van Bogaert L, van der Eecken H (1961) Dégénérescences nigro-striées et cérébello-nigro-striées (Unicité clinique et variabilité pathologique des dégénérescences préséniles à forme de rigidité extrapyramidale). Psychiatr Neurol (Basel) 142:219–259

    CAS  Google Scholar 

  • Agid Y, Blin J (1987) Nerve cell death in degenerative diseases of the central nervous system: clinical aspects. Ciba Found Symp 126:3–29

    PubMed  CAS  Google Scholar 

  • Agid Y, Javoy-Agid F, Ruberg M (1987) Biochemistry of neurotransmitters in Parkinson’s disease. In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworths, London, pp 166–230

    Google Scholar 

  • Ahmed Z, Josephs KA, Gonzalez J, DelleDonne A, Dickson DW (2008) Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain 131:460–472

    PubMed  Google Scholar 

  • Albers DS, Augood SJ (2001) New insights into progressive supranuclear palsy. Trends Neurosci 24:347–362

    PubMed  CAS  Google Scholar 

  • Albin RL, Mink JW (2006) Research advances in Tourette syndrome research. Trends Neurosci 29:175–182

    PubMed  CAS  Google Scholar 

  • Albin RL, Young AR, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    PubMed  CAS  Google Scholar 

  • Albin RL, Reiner A, Anderson KD, Penney JB, Young AB (1990) Striatal and nigral neuron subpopulations in rigid Huntington’s disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol 27:357–365

    PubMed  CAS  Google Scholar 

  • Alegret M, Junque C, Valldeoriola F, Vendrell P, Marti MJ, Tolosa E (2001) Obsessive-compulsive symptoms in Parkinson’s disease. J Neurol Neurosurg Psychiatry 70:394–396

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    PubMed  CAS  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    PubMed  CAS  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    PubMed  CAS  Google Scholar 

  • Alheid GF, Heimer L, Switzer RC (1990) Basal ganglia. In: Paxinos G (ed) The human nervous system. Academic, San Diego, CA, pp 483–582

    Google Scholar 

  • Andén NE, Carlsson A, Dahlström A, Fuxe K, Hillarp N-Å, Larsson K (1964) Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci 3:523–530

    PubMed  Google Scholar 

  • Andén NE, Dahlström A, Fuxe K, Larsson K, Olson L, Ungerstedt U (1966) Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol Scand 67:313–326

    Google Scholar 

  • Aravamuthan BR, Muthusamy KA, Stein JF, Aziz TZ, Johansen-Berg H (2007) Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage 37:694–705

    PubMed  CAS  Google Scholar 

  • Aziz TZ, Peggs D, Sambrook MA, Crossman AR (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 6:288–291

    PubMed  CAS  Google Scholar 

  • Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956

    PubMed  CAS  Google Scholar 

  • Baron MS, Vitek JL, Bakay RAE, Green J, Kaneoke Y, Hashimoto T et al (1996) Treatment of advanced Parkinson’s disease by GPi pallidotomy: 1 year pilot-study results. Ann Neurol 40:355–366

    PubMed  CAS  Google Scholar 

  • Barthó P, Freund TF, Acsády L (2002) Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci 16:999–1014

    PubMed  Google Scholar 

  • Barthó P, Slézia A, Varga V, Bokor H, Pinault D, Buzsáki G, Acsády L (2007) Cortical control of zona incerta. J Neurosci 27:1670–1681

    PubMed Central  PubMed  Google Scholar 

  • Bäumer T, Demiralay C, Hidding U, Bikmulina R, Helmich RC, Wunderlich S et al (2007) Abnormal plasticity of the sensorimotor cortex to slow repetitive transcranial magnetic stimulation in patients with writer’s cramp. Mov Disord 22:81–90

    PubMed  Google Scholar 

  • Beach TG, McGeer EG (1984) The distribution of substance P in the primate basal ganglia: an immunohistochemical study of baboon and human brain. Neuroscience 13:29–52

    PubMed  CAS  Google Scholar 

  • Beal MF, Ellison DW, Mazurek MF, Swartz KJ, Malloy JR, Bird ED, Martin JB (1988) A detailed examination of substance P in pathologically graded cases of Huntington’s disease. J Neurol Sci 84:51–61

    PubMed  CAS  Google Scholar 

  • Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184

    PubMed  CAS  Google Scholar 

  • Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M et al (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337:403–406

    PubMed  CAS  Google Scholar 

  • Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E et al (1996) Chronic electrical stimulation of the ventral intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84:203–214

    PubMed  CAS  Google Scholar 

  • Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81

    PubMed  Google Scholar 

  • Berardelli A, Currà A, Fabbrini G, Gilio F, Manfredi M (2003) Pathophysiology of tics and Tourette syndrome. J Neurol 250:781–787

    PubMed  Google Scholar 

  • Berendse HW, Booij J, Leenders KL (2007) Neuroimaging in movement disorders: PET and SPECT. In: Wolters EC, van Laar T, Berendse HW (eds) Parkinsonism and related disorders. VU University Press, Amsterdam, pp 505–521

    Google Scholar 

  • Berg D, Hochstrasser K (2006) Iron metabolism in Parkinsonian syndromes. Mov Disord 21:1299–1310

    PubMed  Google Scholar 

  • Berg D, Roggendorf W, Schroder U, Klein R, Tatschner T, Benz P et al (2002) Echogenenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 59:999–1005

    PubMed  Google Scholar 

  • Berg D, Godau J, Walter U (2008) Transcranial sonography in movement disorders. Lancet Neurol 7:1044–1055

    PubMed  Google Scholar 

  • Bergman H, Karmon B, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438

    PubMed  CAS  Google Scholar 

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20:415–455

    PubMed  CAS  Google Scholar 

  • Betarbet R, Turner R, Chockkan V, DeLong MR, Allers KA, Walters J et al (1997) Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 17:6761–6768

    PubMed  CAS  Google Scholar 

  • Bhatia KP, Marsden CD (1994) The behavioral and motor consequences of focal lesions of the basal ganglia in man. Brain 117:859–876

    PubMed  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der L-3, 4-Dioxy-Phenylalanine (DOPA) Effekt in Parkinson-Akinesia. Wiener Klin Wochenschr 73:787–788

    CAS  Google Scholar 

  • Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    PubMed  Google Scholar 

  • Bogerts B (1981) A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker. J Comp Neurol 197:63–80

    PubMed  CAS  Google Scholar 

  • Bogerts B, Häntsch J, Herzer M (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 18:951–969

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1982) Neuronal types in the striatum of man. Cell Tissue Res 227:319–342

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1986) Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Human Neurobiol 5:71–82

    CAS  Google Scholar 

  • Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247:3–10

    Google Scholar 

  • Braak H, Del Tredici K (2009) Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201:1–119

    PubMed  Google Scholar 

  • Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen Steur ENH, Bohl J (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol (Berl) 88:493–500

    CAS  Google Scholar 

  • Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen ENH, Bohl J (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103:455–490

    PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  • Breakefield XO, Blood AJ, Li Y, Hallett M, Hanson PI, Standaert DG (2008) The pathophysiological basis of dystonia. Nat Neurosci Rev 9:222–234

    CAS  Google Scholar 

  • Brenneis C, Egger K, Scherfler C, Seppi K, Schocke M, Poewe W, Wenning GK (2007) Progression of brain atrophy in multiple system atrophy. A longitudinal VBM study. J Neurol 254:191–196

    PubMed  Google Scholar 

  • Brodkey JA, Tasker RR, Hamani C, McAndrews MP, Dostrovsky JO, Lozano AM (2004) Tremor cells in the human thalamus: differences among neurologic disorders. J Neurosurg 101:43–47

    PubMed  Google Scholar 

  • Brooks DJ (2000) PET studies and motor complications in Parkinson’s disease. Trends Neurosci 23(Suppl):S101–S108

    PubMed  CAS  Google Scholar 

  • Brooks DJ, Salmon EP, Matthias CJ, Quinn N, Leenders KL, Bannister R et al (1990) The relationship between locomotor disability, autonomic dysfunction, and the integrity of the striatal dopaminergic system in patients with multiple system atrophy, pure autonomic failure, and Parkinson’s disease, studied with PET. Brain 113:1539–1552

    PubMed  Google Scholar 

  • Bruyn GW (1973) Neuropathological changes in Huntington’s disease. Adv Neurol 1:399–403

    Google Scholar 

  • Bruyn GW, Bots GTAM, Dom R (1979) Huntington’s chorea: current neuropathological data. Adv Neurol 23:83–93

    Google Scholar 

  • Burns RS, Chiueh CC, Markey S, Ebert MH, Jacobowitz D, Kopin LJ (1983) A primate model of Parkinson’s disease: selective destruction of substantia nigra pars compacta dopaminergic neurons by N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carbon M, Kingsley PB, Su S, Smith GS, Spetsieris P, Bressman S, Eidelberg D (2004) Microstructural white matter changes in carriers of the DYT1 gene mutation. Ann Neurol 56:263–286

    Google Scholar 

  • Carpenter MB (1981) Anatomy of the corpus striatum and brain stem integrating systems. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, vol II, Motor Systems. American Physiological Society, Bethesda, MD, pp 947–995

    Google Scholar 

  • Carpenter MB, McMasters RE (1964) Lesions of the substantia nigra in the rhesus monkey. Efferent fiber degeneration and behavioral observations. Am J Anat 114:293–320

    PubMed  CAS  Google Scholar 

  • Carpenter MB, Whittier JR, Mettler FA (1950) Analysis of choreoid hyperkinesia in the rhesus monkey. Surgical and pharmacological analysis of hyperkinesia resulting from lesions of the subthalamic nucleus of Luys. J Comp Neurol 92:293–331

    PubMed  CAS  Google Scholar 

  • Carpenter MB, Fraser RAR, Shriver JE (1968) The organization of the pallidosubthalamic fibers in the monkey. Brain Res 11:521–559

    Google Scholar 

  • Carpenter MB, Carleton SC, Keller JT, Conte P (1981) Connections of the subthalamic nucleus in the monkey. Brain Res 224:1–29

    PubMed  CAS  Google Scholar 

  • Ceballos-Baumann AO, Obeso JA, Vitek JL, DeLong MR, Bakay R, Linaasoro G, Brooks DJ (1994) Restoration of thalamocortical activity after posteroventrolateral pallidotomy in Parkinson’s disease. Lancet 344:8–14

    Google Scholar 

  • Cepeda C, Wu N, André VM, Cummings DM, Levine MS (2007) The corticostriatal pathway in Huntington’s disease. Prog Neurobiol 81:253–271

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13:277–280

    PubMed  CAS  Google Scholar 

  • Chikama M, McFarland NR, Amaral DG, Haber SN (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17:9686–9705

    PubMed  CAS  Google Scholar 

  • Chiueh CC, Burns RS, Markey SP, Jacobowitz DM, Kopin IJ (1985) Primate model of Parkinsonism: selective lesion of nigrostriatal neurons by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine produces an extrapyramidal syndrome in rhesus monkeys. Life Sci 36:213–218

    PubMed  CAS  Google Scholar 

  • Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Rev 34:80–101

    PubMed  CAS  Google Scholar 

  • Cooper IS (1954) Surgical occlusion of the anterior choroidal artery in parkinsonism. Surg Gynecol Obst 92:207–219

    Google Scholar 

  • Cooper IS, Bergman LL, Caracalos A (1963) Anatomic verification of the lesion which abolishes parkinsonian-tremor and rigidity. Neurology 13:779–787

    PubMed  CAS  Google Scholar 

  • Cordato NJ, Halliday GM, Harding AJ, Hely MA, Morris JGL (2000) Regional brain atrophy in progressive supranuclear palsy and Lewy body disease. Ann Neurol 47:718–728

    PubMed  CAS  Google Scholar 

  • Cordato NJ, Pantelis C, Halliday GM, Velakoulis D, Wood SJ, Stuart GW et al (2002) Frontal atrophy correlates with behavioural changes in progressive supranuclear palsy. Brain 125:789–800

    PubMed  CAS  Google Scholar 

  • Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. New Engl J Med 276:374–379

    PubMed  CAS  Google Scholar 

  • Cowan WM, Powell TPS (1966) Striopallidal projection in the monkey. J Neurol Neurosurg Psychiatry 29:426–439

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cox PA, Sacks OW (2002) Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 58:956–959

    PubMed  Google Scholar 

  • Crossman AR (1987) Primate models of dyskinesia: the experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience 21:1–40

    PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62(Suppl 232):1–55

    Google Scholar 

  • Dahlström A, Fuxe K (1965) Evidence for the existence of monoamine containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand 64(Suppl 247):1–36

    Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999a) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D28K immunohistochemistry. Brain 122:1421–1436

    PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999b) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448

    PubMed  Google Scholar 

  • Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254

    PubMed  CAS  Google Scholar 

  • Dejerine J, Thomas AA (1900) L’atrophie olivo-ponto-cérébelleuse. Nouv Iconogr Salpêtr 13:330–370

    Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    PubMed  CAS  Google Scholar 

  • DeLong MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, vol II, Motor systems. American Physiological Society, Bethesda, MD, pp 1017–1061

    Google Scholar 

  • Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A (2004) Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Neuroanat 27:143–164

    PubMed  CAS  Google Scholar 

  • Denny-Brown D, Yanagisawa N (1976) The role of the basal ganglia in the initiation of movements. In: Yahr MD (ed) The basal ganglia. Raven, New York, pp 115–148

    Google Scholar 

  • Deuschl G, Raethjen J (2007) Tremor. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby-Elsevier, Philadelphia, PA, pp 417–433

    Google Scholar 

  • Deuschl G, Raethjen J, Baron R, Lindemann M, Wilms H, Krack P (2000) The pathophysiology of parkinsonian tremor: a review. J Neurol 247(Suppl 5):V33–V48

    PubMed  Google Scholar 

  • DeVito JL, Anderson ME (1982) An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 46:106–117

    Google Scholar 

  • Dickson DW (2001) α-Synuclein and the Lewy body disorders. Curr Opin Neurol 14:423–432

    PubMed  CAS  Google Scholar 

  • Dickson DW (2004) Sporadic tauopathies: Pick’s disease, corticobasal degeneration, progressive supranuclear palsy and argyrophilic grain disease. In: Esiri MM, Lee VM-Y, Trojanowski JQ (eds) The neuropathology of dementia, 2nd edn. Cambridge University Press, Cambridge, pp 227–256

    Google Scholar 

  • Dierssen G, Bergmann L, Gioino L, Cooper IS (1961) Hemiballism following surgery for Parkinson’s disease. Arch Neurol 5:627–637

    PubMed  CAS  Google Scholar 

  • DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C et al (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14:1075–1081

    PubMed  CAS  Google Scholar 

  • Dogali M, Fazzini E, Kolodny E, Eidelberg D, Sterio D, Devinsky O, Beric A (1995) Stereotactic ventral pallidotomy for Parkinson’s disease. Neurology 45:753–761

    PubMed  CAS  Google Scholar 

  • Draganski B, Thun-Hohenstein C, Bogdahn U, Winkler J, May A (2003) “Motor circuit” gray matter changes in idiopathic cervical dystonia. Neurology 61:1228–1231

    PubMed  CAS  Google Scholar 

  • Dragunow M, Faull RLM, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal cortex. Neuroreport 6:1053–1057

    PubMed  CAS  Google Scholar 

  • Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15:5999–6013

    PubMed  CAS  Google Scholar 

  • Edinger L (1911) Vorlesungen über den Bau der nervösen Zentralorgane, vol I, 8th edn. Vogel, Leipzig

    Google Scholar 

  • Edwards MJ, Huang Y-Z, Mir P, Rothwell JC, Bhatia KP (2006) Abnormalities in motor cortical plasticity differentiate manifesting and non-manifesting DYT1 carriers. Mov Disord 21:2181–2186

    PubMed  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38:1236–1239

    PubMed  CAS  Google Scholar 

  • Elias S, Israel Z, Bergman H (2008) Physiology of Parkinson’s disease. In: Hallett M, Poewe W (eds) Therapeutics of Parkinson’s disease and other movement disorders. Wiley-Blackwell, Oxford, pp 25–36

    Google Scholar 

  • Esselink R (2007) Subthalamic nucleus stimulation in Parkinson’s disease. Thesis, Radboud University Nijmegen

    Google Scholar 

  • Fahn S (1988) Concept and classification of dystonia. Adv Neurol 50:1–8

    PubMed  CAS  Google Scholar 

  • Falck B, Hillarp N-Å, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    CAS  Google Scholar 

  • Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    PubMed  CAS  Google Scholar 

  • Fearnley JM, Lees AJ (1990) Striatonigral degeneration. A clinicopathological study. Brain 113:1823–1842

    PubMed  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    PubMed  Google Scholar 

  • Feekes JA, Cassell MD (2006) The vascular supply of the functional compartments of the human striatum. Brain 129:2189–2201

    PubMed  Google Scholar 

  • Feekes JA, Hsu S-W, Chaloupka JC, Cassell MD (2005) Tertiary microvascular territories define lacunar infarcts in the basal ganglia. Ann Neurol 58:18–30

    PubMed  Google Scholar 

  • Fernández-Alvarez E, Aicardi J (2001) Movement disorders in children. Mac Keith, London

    Google Scholar 

  • Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP (1987) Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 46:12–27

    PubMed  CAS  Google Scholar 

  • Ferraro A (1925) Contributa sperimentale allo studio della substantia nigra normale e dei suoi rapporti con la corteccia cerebrale e con il corpo striato. Arch Gen Neurol Psichiatr 6:26–117

    Google Scholar 

  • Ferraro A (1928) The connections of the pars oculomotoria of the substantia nigra. Arch Neurol Psychiatry 19:177–180

    Google Scholar 

  • Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J Neurophysiol 66:1249–1263

    PubMed  CAS  Google Scholar 

  • Foix C (1921) Les lésions anatomiques de la maladie de Parkinson. Rev Neurol (Paris) 37:593–600

    Google Scholar 

  • Foix C, Nicolesco J (1925) Les noyaux gris centraux et la région mésencéphalo-sous-optique. Masson, Paris

    Google Scholar 

  • Forel A (1877) Untersuchungen über die Haubenregion and ihre Verknüpfungen im Gehirne des Menschen und einiger Säugethiere, mit Beiträgen zu den Methoden der Gehirnuntersuchung. Arch Psychiatr Nervenkr 7:393–495

    Google Scholar 

  • François C, Percheron G, Yelnik J, Heyner S (1984a) A Golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons. Other neuronal types. Afferent axons. J Comp Neurol 227:182–199

    PubMed  Google Scholar 

  • François C, Percheron G, Yelnik J (1984b) Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques. Neuroscience 13:61–76

    PubMed  Google Scholar 

  • François C, Percheron G, Yelnik J, Heyner S (1985) A histological atlas of the macaque (Macaca mulatta) substantia nigra in ventricular correlates. Brain Res Bull 14:349–367

    PubMed  Google Scholar 

  • François C, Yelnik J, Percheron G (1987) Golgi study of the primate substantia nigra. II. Spatial organization of dendritic arborizations in relation to the cytoarchitectonic boundaries and to the striatonigral bundle. J Comp Neurol 265:473–493

    PubMed  Google Scholar 

  • François C, Yelnik J, Percheron G, Tandé D (1994a) Calbindin D-28k as a marker for the associative cortical territory of the striatum in macaques. Brain Res 633:331–336

    PubMed  Google Scholar 

  • François C, Yelnik J, Percheron G, Fénelon G (1994b) Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra. Exp Brain Res 102:305–318

    PubMed  Google Scholar 

  • François C, Tandé D, Yelnik J, Hirsch E (2002) Distribution and morphology of nigral axons projecting to the thalamus in primates. J Comp Neurol 447:249–260

    PubMed  Google Scholar 

  • Galvin JE (2006) Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson’s disease: a case for the selective vulnerability of the substantia nigra. Acta Neuropathol (Berl) 112:115–126

    Google Scholar 

  • Galvin JE, Lee VM-Y, Trojanowski JQ (2001) Synucleinopathies: clinical and pathological implications. Arch Neurol 58:186–190

    PubMed  CAS  Google Scholar 

  • Gaspar P, Berger B, Hamon M, Cesselin F, Vigny A, Javoy-Agid F, Agid Y (1983) Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon. J Neurol Sci 58:247–267

    PubMed  CAS  Google Scholar 

  • Gebbink TB (1967) Structure and connections of the basal ganglia in Man. Thesis, University of Leiden. Van Gorcum, Assen

    Google Scholar 

  • Gerfen CR, Wilson CJ (1996) The basal ganglia. Handb Chem Neuroanat 12:369–466

    Google Scholar 

  • German DC, Dubach M, Askari S, Speciale SG, Bowden DM (1988) 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced parkinsonian syndrome in Macaca fascicularis: which midbrain dopaminergic neurons are lost? Neuroscience 24:161–174

    PubMed  CAS  Google Scholar 

  • Giasson BI, Lee VM-Y, Trojanowski JQ (2004) Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy and the spectrum of diseases with α-synuclein inclusions. In: Esiri MM, Lee VM-Y, Trojanowski JQ (eds) The neuropathology of Dementia, 2nd edn. Cambridge University Press, Cambridge, pp 353–375

    Google Scholar 

  • Gibb WRG, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54:388–396

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gibb WRG, Luthert PJ, Marsden CD (1989) Corticobasal degeneration. Brain 112:1171–1192

    PubMed  Google Scholar 

  • Gibb WRG, Luthert PJ, Marsden CD (1990) Clinical and pathological features of corticobasal degeneration. Adv Neurol 53:51–54

    PubMed  CAS  Google Scholar 

  • Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27:2803–2820

    PubMed  Google Scholar 

  • Gilles de la Tourette C (1885) Étude sur une affection nerveuse characterisée par de l’incoordination motrice accompagnée d’echolalie et de coprolalie. Arch Neurol (Paris) 9:19–42

    Google Scholar 

  • Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ et al (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163:94–98

    PubMed  CAS  Google Scholar 

  • Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676

    PubMed Central  PubMed  CAS  Google Scholar 

  • Giménez-Amaya JM, Graybiel AM (1990) Compartmental origins of the striatopallidal projection in the primate. Neuroscience 34:111–126

    PubMed  Google Scholar 

  • Giménez-Amaya JM, Graybiel AM (1991) Modular organization of projection neurons in the matrix compartment of the primate striatum. J Neurosci 11:779–791

    PubMed  Google Scholar 

  • Goldman PS, Nauta WJH (1977) An intricately patterned prefrontocaudate projection in the rhesus monkey. J Comp Neurol 171:369–386

    Google Scholar 

  • Goldman-Rakic PS (1981) Prenatal formation of cortical input and development of cytoarchitectonic compartments in the neostriatum of the rhesus monkey. J Neurosci 1:721–735

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1982) Cytoarchitectonic heterogeneity of the primate neostriatum: subdivision into island and matrix cellular compartments. J Comp Neurol 205:398–413

    PubMed  CAS  Google Scholar 

  • Grafe MR, Forno LS, Eng LF (1985) Immunocytochemical studies of substance P and Met-enkephalin in the basal ganglia and substantia nigra in Huntington’s, Parkinson’s and Alzheimer diseases. J Neuropathol Exp Neurol 44:47–69

    PubMed  CAS  Google Scholar 

  • Graham JG, Oppenheimer DR (1969) Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J Neurol Neurosurg Psychiatry 32:28–34

    PubMed Central  PubMed  CAS  Google Scholar 

  • Graham WC, Crossman AR, Woodruff GN (1990) Injection of excitatory amino acid antagonists into the medial pallidal segment of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated primate reverses motor symptoms of parkinsonism. Life Sci 47:Pl-91–Pl-97

    CAS  Google Scholar 

  • Graveland GA, Williams RS, DiFiglia M (1985) A Golgi study of the human neostriatum: neurons and afferent fibers. J Comp Neurol 234:317–333

    PubMed  CAS  Google Scholar 

  • Graybiel AM (1984) Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 13:1157–1187

    PubMed  CAS  Google Scholar 

  • Graybiel AM (1986) Neuropeptides in the basal ganglia. In: Martin JD, Barchas JD (eds) Neuropeptides in neurologic and psychiatric disease. Raven, New York, pp 135–161

    Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkey and cat, demonstrated by acetylcholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726

    PubMed Central  PubMed  CAS  Google Scholar 

  • Graybiel AM, Rauch SL (2000) Toward a neurobiology of obsessive-compulsive disorder. Neuron 28:343–347

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Pickel VM, Joh TH, Reis DJ, Ragsdale CW Jr (1981) Direct demonstration of correspondence between the dopamine islands and acetylcholinesterase patches in the developing striatum. Proc Natl Acad Sci USA 78:5871–5875

    PubMed Central  PubMed  CAS  Google Scholar 

  • Graybiel AM, Canales JJ, Capper-Loup C (2000) Levodopa-induced dyskinesias and dopamine-dependent stereotypies: A new hypothesis. Trends Neurosci 23(Suppl):S71–S77

    PubMed  CAS  Google Scholar 

  • Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs in roles for the striatum and pallidum. Trends Neurosci 28:364–370

    PubMed  CAS  Google Scholar 

  • Guridi J, Obeso JA (2001) The subthalamic nucleus, hemiballismus and Parkinson’s disease: reappraisal of a neurosurgical dogma. Brain 124:5–19

    PubMed  CAS  Google Scholar 

  • Guridi J, Herrero MT, Luquin R, Guillen J, Obeso JA (1994) Subthala­motomy improves MPTP-induced parkinsonism in monkeys. Stereotact Funct Neurosurg 62:98–102

    PubMed  CAS  Google Scholar 

  • Gutekunst C-A, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D et al (1999) Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 19:2522–2534

    PubMed  CAS  Google Scholar 

  • Haaxma R, van Boxtel A, Brouwer WH, Goeken LNH, Denier van der Gon JJ, Colebatch J et al (1995) Motor function in a patient with bilateral lesions of the globus pallidus. Mov Disord 10:761–777

    PubMed  CAS  Google Scholar 

  • Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol 11:323–342

    PubMed  CAS  Google Scholar 

  • Haber SN, Gdowski MJ (2004) Basal ganglia. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 676–738

    Google Scholar 

  • Haber SN, Groenewegen HJ (1989) Interrelationship of the distribution of neuropeptides and tyrosine hydroxylase immunoreactivity in the human substantia nigra. J Comp Neurol 290:53–68

    PubMed  CAS  Google Scholar 

  • Haber SN, Lynd C, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293:282–298

    PubMed  CAS  Google Scholar 

  • Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867

    PubMed  CAS  Google Scholar 

  • Hallett M (2006) The neurophysiology of dystonia. Arch Neurol 55:601–603

    Google Scholar 

  • Halliday GM, Törk I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J Comp Neurol 252:423–445

    PubMed  CAS  Google Scholar 

  • Halliday GM, Li YW, Blumbergs PC, Joh TH, Corton RGH, Howe PRC et al (1990) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27:373–385

    PubMed  CAS  Google Scholar 

  • Halliday GM, Macdonald V, Henderson JM (2005) A comparison of degeneration in motor thalamus and cortex between progressive supranuclear palsy and Parkinson’s disease. Brain 128:2272–2280

    PubMed  Google Scholar 

  • Halliday GM, Hely M, Reid W, Morris J (2008) The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol (Berl) 115:409–415

    Google Scholar 

  • Hamada I, DeLong MR (1992) Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding. J Neurophysiol 68:1859–1966

    PubMed  CAS  Google Scholar 

  • Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20

    PubMed  Google Scholar 

  • Hamani C, Dostrovsky JO, Lozano AM (2006) The motor thalamus in neurosurgery. Neurosurgery 58:146–158

    PubMed  Google Scholar 

  • Hammond C, Féger J, Bioulac B, Souteyrand JP (1979) Experimental hemiballism in the monkey produced by unilateral kainic acid lesion in corpus Luysi. Brain Res 171:577–580

    PubMed  CAS  Google Scholar 

  • Hanich A, Maloney FJ (1969) Localization of stereotaxic lesions in the treatment of parkinsonism: a clinicopathological comparison. J Neurosurg 31:393–399

    Google Scholar 

  • Hardman CD, Halliday GM (1999a) The external globus pallidus in patients with Parkinson’s disease and progressive supranuclear palsy. Mov Disord 14:626–633

    PubMed  CAS  Google Scholar 

  • Hardman CD, Halliday GM (1999b) The internal globus pallidus is affected in progressive supranuclear palsy and Parkinson’s disease. Exp Neurol 158:135–142

    PubMed  CAS  Google Scholar 

  • Hardman CD, McRitchie DA, Halliday GM, Cartwright HR, Morris JGL (1996) The substantia nigra pars reticulata in Parkinson’s disease. Neurodegeneration 5:49–55

    PubMed  CAS  Google Scholar 

  • Hardman CD, Halliday GM, McRitchie DA, Cartwright HR, Morris JGL (1997a) Progressive supranuclear palsy affects both the substantia nigra pars compacta and reticulata. Exp Neurol 144:183–192

    PubMed  CAS  Google Scholar 

  • Hardman CD, Halliday GM, McRitchie DA, Morris JGL (1997b) The subthalamic nucleus in Parkinson’s disease and progressive supranuclear palsy. J Neuropathol Exp Neurol 56:132–142

    PubMed  CAS  Google Scholar 

  • Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445:238–255

    PubMed  Google Scholar 

  • Hardy JA, Mann DMA, Webster P, Winblad B (1986) An integrative hypothesis concerning the pathogenesis and progression of Alzheimer’s disease. Neurobiol Aging 7:489–502

    PubMed  CAS  Google Scholar 

  • Harper PS (ed) (1996) Huntington’s disease, 2nd edn. Saunders, Philadelphia, PA

    Google Scholar 

  • Hartmann-von Monakow K, Akert K, Künzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33:395–403

    Google Scholar 

  • Hassler R (1937) Zur Normalanatomie der Substantia nigra. Versuch einer architektonischen Gliederung. J Psychol Neurol (Lpz) 48:1–55

    Google Scholar 

  • Hassler R (1938) Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J Psychol Neurol (Lpz) 48:387–476

    Google Scholar 

  • Hassler R (1959) Anatomy of the thalamus. In: Schaltenbrand G, Bailey P (eds) Introduction to stereotaxis with an atlas of the human brain. Thieme, Stuttgart, pp 230–290

    Google Scholar 

  • Hassler R, Riechert T (1954) Indikationen und Lokalisationsmethode der gezielten Hirnoperationen. Der Nervenarzt 25:441–447

    PubMed  CAS  Google Scholar 

  • Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KHL, Gitschier J (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40

    PubMed  CAS  Google Scholar 

  • Hazrati L-N, Parent A (1991) Projection from the external pallidum to the reticular nucleus in the squirrel monkey. Brain Res 550:142–146

    PubMed  CAS  Google Scholar 

  • Hazrati L-N, Parent A (1992a) Projections from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. Brain Res 585:267–271

    PubMed  CAS  Google Scholar 

  • Hazrati L-N, Parent A (1992b) The striatopallidal projection displays a high degreee of anatomical specificity in the primate. Brain Res 592:213–227

    PubMed  CAS  Google Scholar 

  • Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral and nigrostriatal projections in the macaque. J Comp Neurol 304:569–595

    PubMed  CAS  Google Scholar 

  • Heimer L (1976) The olfactory cortex and the ventral striatum. In: Livingstone KE, Hornykiewicz O (eds) Limbic mechanisms: the continuing evolution of the limbic system concept. Plenum, New York, pp 95–187

    Google Scholar 

  • Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Rev 31:205–235

    PubMed  CAS  Google Scholar 

  • Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum. Components of the motor system? Trends Neurosci 5:83–87

    Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Záborsky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165

    PubMed  CAS  Google Scholar 

  • Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J (1997) Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 76:957–1006

    PubMed  CAS  Google Scholar 

  • Heise CE, Mitrofanis J (2004) Evidence for a glutamatergic projection from the zona incerta to the basal ganglia of rats. J Comp Neurol 468:482–495

    PubMed  CAS  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000a) Degeneration of the thalamic caudal intralaminar nuclei in Parkinson’s disease. Ann Neurol 47:345–352

    PubMed  CAS  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000b) Loss of thalamic intranuclear nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123:1410–1421

    PubMed  Google Scholar 

  • Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J Neurophysiol 49:1230–1253

    PubMed  CAS  Google Scholar 

  • Hirai T, Jones EG (1989a) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34

    PubMed  CAS  Google Scholar 

  • Hirai T, Jones EG (1989b) Distribution of tachykinin-immunoreactive fibers in the human thalamus. Brain Res Rev 14:35–52

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348

    PubMed  CAS  Google Scholar 

  • Hodaie M, Neimat JS, Lozano AM (2007) The dopaminergic nigrostriatal system and Parkinson’s disease: molecular events in development, disease, and cell death, and new therapeutic strategies. Neurosurgery 60:17–30

    PubMed  Google Scholar 

  • Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384:1–25

    PubMed  CAS  Google Scholar 

  • Holton JL, Schneider SA, Ganesharajah T, Gandhi S, Strand C, Shashidharan P et al (2008) Neuropathology of primary adult-onset dystonia. Neurology 70:695–699

    PubMed  CAS  Google Scholar 

  • Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463

    PubMed  CAS  Google Scholar 

  • Hopkins DA, Niessen LW (1976) Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci Lett 2:253–259

    PubMed  CAS  Google Scholar 

  • Hore J, Vilis T (1980) Arm movement performance during reversible basal ganglia lesions in the monkey. Exp Brain Res 39:217–228

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O, Kish SJ (1986) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34

    Google Scholar 

  • Horstink MWIM (2007) Drug-induced and toxic parkinsonism. In: Wolters EC, van Laar T, Berendse HW (eds) Parkinsonism and related disorders. VU University Press, Amsterdam, pp 297–306

    Google Scholar 

  • Huntington GL (1872) On chorea. Medical and Surgical Reporter, Philadelphia, PA 26:317–321

    Google Scholar 

  • Huntington’s Diseases Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s diseases chromosome. Cell 72:971–983

    Google Scholar 

  • Huntsman RJ, Sinclair DB, Bhargava R, Chan A (2005) Atypical presentations of Leigh syndrome: a case series and review. Pediatr Neurol 32:334–340

    PubMed  Google Scholar 

  • Hutchison WD, Lozano AM (2000) Microelectrode recordings in movement disorder surgery. In: Lozano AM (ed) Movement Disorder Surgery, vol 15, Prog Neurol Surg. Karger, Basel, pp 103–117

    Google Scholar 

  • Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, Lang AE, Lozano AM (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44:621–628

    Google Scholar 

  • Ilinsky IA, Jouandet ML, Goldman-Rakic PS (1985) Organization of the nigrothalamocortical system in the rhesus monkey. J Comp Neurol 236:315–330

    PubMed  CAS  Google Scholar 

  • Ilinsky IA, Yi H, Kultas-Ilinsky K (1997) The mode of termination of pallidal afferents to the thalamus: a light and electron microscopic study with anterograde tracers and immunocytochemistry in Macaca mulatta. J Comp Neurol 386:601–612

    PubMed  CAS  Google Scholar 

  • Javoy-Agid F, Ruberg M, Taquer H, Bokobza B, Agid Y (1984) Biochemical neuropathology of Parkinson’s disease. Adv Neurol 40:189–197

    PubMed  CAS  Google Scholar 

  • Jayaraman A, Batton RR, Carpenter MB (1977) Nigrotectal projections in the monkey, an autoradiographic study. Brain Res 135:147–152

    PubMed  CAS  Google Scholar 

  • Jelgersma G (1931) Atlas Anatomicum Cerebri. Scheltema & Holkema, Amsterdam

    Google Scholar 

  • Jellinger KA (1971) Progressive supranuclear palsy (subcortical argyrophilic dystrophy). Acta Neuropathol (Berl) 19:347–352

    CAS  Google Scholar 

  • Jellinger KA (1986) Overview of morphological changes in Parkinson’s disease. Adv Neurol 45:1–18

    Google Scholar 

  • Jellinger KA (1988) The pedunculopontine nucleus in Parkinson’s ­disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jellinger KA (2001) The pathology of Parkinson’s disease. Adv Neurol 86:55–72

    PubMed  CAS  Google Scholar 

  • Jellinger KA, Attems J (2006) Does striatal pathology distinguish Parkinson disease with dementia and dementia with Lewy bodies? Acta Neuropathol (Berl) 112:253–260

    Google Scholar 

  • Jellinger KA, Danielczyk W (1968) Striato-nigrale Degeneration. Acta Neuropathol (Berl) 10:242–257

    CAS  Google Scholar 

  • Jimenez-Castellanos J, Graybiel AM (1989) Evidence that histochemically distinct zones of the primate substantia nigra pars compacta are related to patterned distributions of nigrostriatal projection neurons and striatonigral fibers. Exp Brain Res 74:227–238

    PubMed  CAS  Google Scholar 

  • Jones EG, Coulter JD, Burton H, Porter R (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol 173:53–80

    PubMed  CAS  Google Scholar 

  • Josephs KA, Katsuse O, Beccano-Kelly DA, Lin W-L, Uitti RJ, Fujino Y et al (2006) Atypical progressive supranuclear palsy with corticospinal tract degeneration. J Neuropathol Exp Neurol 65:396–405

    PubMed  Google Scholar 

  • Karachi C, François C, Parain K, Bardinet E, Tandé D, Hirsch E, Yelnik J (2002) Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 450:122–134

    PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10:3421–3438

    PubMed  CAS  Google Scholar 

  • Kelly RM, Strick PL (2004) Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res 143:449–459

    PubMed  Google Scholar 

  • Kemp JM, Powell TPS (1970) The corticostriate projection in the monkey. Brain 93:525–546

    PubMed  CAS  Google Scholar 

  • Kievit J, Kuypers HGJM (1977) Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey. Exp Brain Res 29:299–322

    PubMed  CAS  Google Scholar 

  • Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169:263–289

    PubMed  CAS  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease: pathophysiologic and clinical implications. New Engl J Med 218:876–880

    Google Scholar 

  • Kitt CA, Cork LC, Eidelberg F, Joh TH, Price DL (1986) Injury of nigral neurons exposed to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine: A tyrosine hydroxylase immunocyto-chemical study in monkey. Neuroscience 17:1089–1103

    PubMed  CAS  Google Scholar 

  • Kolmac CI, Power BD, Mitrofanis J (1998) Patterns of connections between zona incerta and brainstem in rats. J Comp Neurol 396:544–555

    PubMed  CAS  Google Scholar 

  • Konagaya M, Sakai M, Matsuoka Y, Konagaya H, Hashizume Y (1999) Multiple system atrophy with remarkable frontal lobe atrophy. Acta Neuropathol (Berl) 97:423–428

    CAS  Google Scholar 

  • Kostović I (1986) Prenatal development of the nucleus basalis complex and related fiber systems in man: a histochemical study. Neuroscience 17:1047–1077

    PubMed  Google Scholar 

  • Kumral E, Evyapan D, Balkir K (1999) Acute caudate vascular lesions. Stroke 30:100–108

    PubMed  CAS  Google Scholar 

  • Kunishio K, Haber SN (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 350:337–356

    PubMed  CAS  Google Scholar 

  • Künzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88:195–209

    PubMed  Google Scholar 

  • Künzle H (1977) Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey. Exp Brain Res 30:481–492

    PubMed  Google Scholar 

  • Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15:185–234

    PubMed  Google Scholar 

  • Kuo JS, Carpenter MB (1973) Organization of pallidothalamic projections in the rhesus monkey. J Comp Neurol 151:201–236

    PubMed  CAS  Google Scholar 

  • Laitinen LV, Bergenheim AT, Hariz MI (1992a) Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 76:53–61

    PubMed  CAS  Google Scholar 

  • Laitinen LV, Bergenheim AT, Hariz MI (1992b) Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms. Stereotact Funct Neurosurg 58:14–21

    PubMed  CAS  Google Scholar 

  • Lang AE (2007) The progression of Parkinson disease. A hypothesis. Neurology 68:948–952

    PubMed  Google Scholar 

  • Langer LF, Graybiel AM (1989) Distinct nigrostriatal projection systems innervate striosomes and matrix in the primate striatum. Brain Res 498:344–350

    PubMed  CAS  Google Scholar 

  • Langston JW (1987) MPTP: the promise of a new neurotoxin. In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworths, London, pp 73–90

    Google Scholar 

  • Langston JW (2006) The Parkinson’s complex: Parkinsonism is just the tip of the iceberg. Ann Neurol 59:591–596

    PubMed  Google Scholar 

  • Langston JW, Ballard PA, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    PubMed  CAS  Google Scholar 

  • Laplane D, Levasseur M, Pillon B, Dubois B, Baulac M, Mazoyer B et al (1989) Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions. A neuropsychological, magnetic resonance imaging and positron tomography study. Brain 112:699–725

    PubMed  Google Scholar 

  • Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey. I. Distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209

    PubMed  CAS  Google Scholar 

  • Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey. II. Projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231

    PubMed  CAS  Google Scholar 

  • Lavoie B, Parent A (1994c) Pedunculopontine nucleus in the squirrel monkey. III. Cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344:232–241

    PubMed  CAS  Google Scholar 

  • Lavoie B, Smith Y, Parent A (1989) Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry. J Comp Neurol 289:36–52

    PubMed  CAS  Google Scholar 

  • Leckman JF (2002) Tourette’s syndrome. Lancet 16:1577–1586

    Google Scholar 

  • Leckman J, Cohen D (1999) Tourette’s syndrome – Tics, obsession, compulsions: developmental psychopathology and clinical care. Wiley, New York

    Google Scholar 

  • Lee VM-Y, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    PubMed  CAS  Google Scholar 

  • Leenders KL, Palmer AJ, Quinn N et al (1986) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49:853–860

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lees AJ (1987) The Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworths, London, pp 272–287

    Google Scholar 

  • Lehéricy S, Ducros M, Van de Moortele P-F, François C, Thivard L, Poupon C et al (2004a) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529

    PubMed  Google Scholar 

  • Lehéricy S, Ducros M, Krainik A, François C, Van de Moortele P-F, Ugurbil K, Kim D-S (2004b) Diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex 14:1302–1309

    PubMed  Google Scholar 

  • Lehéricy S, Bardinet E, Tremblay L, Van de Moortele P-F, Pochon J-B, Dormont D et al (2006) Motor control in basal ganglia circuits using fMRI and brain atlas approach. Cereb Cortex 16:149–161

    PubMed  Google Scholar 

  • Leiguarda R, Lees AJ, Merello M, Starkstein S, Marsden CD (1994) The nature of apraxia in corticobasal degeneration. J Neurol Neurosurg Psychiatry 57:455–459

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lemire RJ, Loeser JD, Leech RW, Alvord EC Jr (1975) Normal and abnormal development of the human nervous system. Harper & Row, Hagerstown, MD

    Google Scholar 

  • Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT (1988a) Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol 59:299–316

    PubMed  CAS  Google Scholar 

  • Lenz FA, Tasker RR, Kwan HC, Schider S, Kwong R, Murayama Y et al (1988b) Single-unit analysis of the human ventral thalamic nuclear groups: correlation of thalamic “tremor cells” with the 3-6 Hz component of parkinsonian tremor. J Neurosci 8:754–764

    PubMed  CAS  Google Scholar 

  • Lenz FA, Kwan HC, Dostrovsky JO, Tasker RR, Murphy JT, Lenz YE (1990) Single unit analysis of the human ventral thalamic nuclear group. Activity correlated with movements. Brain 113:1795–1821

    PubMed  Google Scholar 

  • Lenz FA, Kwan HC, Martin RL, Tasker RR, Dostrovsky JO, Lenz YE (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117:531–543

    PubMed  Google Scholar 

  • Lenz FA, Jaeger CJ, Seike MS, Lin YC, Reich SG, DeLong MR, Vitek JL (1999) Thalamic single neuron activity in patients with dystonia: Dystonia-related activity and somatic sensory reorganization. J Neurophysiol 82:2372–2392

    PubMed  CAS  Google Scholar 

  • Letinić K, Kostović I (1996) Transient patterns of calbindin-D28K expression in the developing striatum of man. Neurosci Lett 220:211–214

    PubMed  Google Scholar 

  • Lévesque M, Parent A (2005) The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci USA 102:11888–11893

    PubMed Central  PubMed  Google Scholar 

  • Levy R, Dubois B (2006) Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 16:916–928

    PubMed  Google Scholar 

  • Lewy FH (1913) Zur pathologischen Anatomie der Paralysis agitans. Dtsch Z Nervenheilk 50:50–55

    Google Scholar 

  • Lewy FH (1923) Die Lehre vom Tonus und der Bewegung, zugleich systematische Untersuchung zur Klinik, Physiologie, Pathologie und Pathogenese der Paralysis agitans. Springer, Berlin

    Google Scholar 

  • Limousin P, Pollack P, Benazzouz A et al (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95

    PubMed  CAS  Google Scholar 

  • Litvan I, Mega MS, Cummings JL, Fairbanks L (1996) Neuropsychiatric aspects of progressive supranuclear palsy. Neurology 47:1184–1189

    PubMed  CAS  Google Scholar 

  • Litvan I et al (2007) The etiopathogenesis of Parkinson’s disease and suggestions for future research. Part I. J Neuropathol Exp Neurol 66:251–257

    PubMed  CAS  Google Scholar 

  • Luys J (1865) Recherches sur la système nerveux cérébrospinal, sa structure, ses functions et ses maladies. JB Baillière et Fils, Paris

    Google Scholar 

  • Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345:562–578

    PubMed  CAS  Google Scholar 

  • Macchi G, Jones EG (1997) Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus. J Neurosurg 86:670–685

    PubMed  CAS  Google Scholar 

  • MacMillan ML, Dostrovsky JO, Lozano AM, Hutchison WD (2004) Involvement of human thalamic neurons in internally and externally generated movements. J Neurophysiol 91:1085–1090

    PubMed  CAS  Google Scholar 

  • Magnin M, Morel A, Jeanmonod D (2000) Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience 96:549–564

    PubMed  CAS  Google Scholar 

  • Magnin M, Jetzer U, Morel A, Jeanmonod D (2001) Microelectrode recording and macrostimulation in thalamic and subthalamic MRI guided stereotactic surgery. Neurophysiol Clin 31:230–238

    PubMed  CAS  Google Scholar 

  • Mai JK, Stephens PH, Hopf A, Cuello AC (1986) Substance P in the human brain. Neuroscience 17:709–739

    PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO (1983) Pathological basis for neurotransmitter changes in Parkinson’s disease. Neuropathol Appl Neurobiol 9:3–19

    PubMed  CAS  Google Scholar 

  • Marsden CD (1982) The mysterious motor functions of the basal ganglia: the Robert Wartenberg lecture. Neurology 32:514–539

    PubMed  CAS  Google Scholar 

  • Marsden CD, Obeso JA, Zarranz JJ (1985) The anatomical basis of symptomatic hemidystonia. Brain 108:463–483

    PubMed  Google Scholar 

  • Martin JP (1927) Hemichorea resulting from a local lesion of the brain (the syndrome of the body of Luys). Brain 50:637–651

    Google Scholar 

  • Matelli M, Luppino G, Fogassi L, Rizzolatti G (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J Comp Neurol 280:468–488

    PubMed  CAS  Google Scholar 

  • Matsumura M, Kojima J, Gardiner TW, Hikosaka O (1992) Visual and oculomotor functions of monkey subthalamic nucleus. J Neurophysiol 67:1615–1632

    PubMed  CAS  Google Scholar 

  • McKee AC, Levine DN, Kowall NW, Richardson EP (1990) Peduncular hallucinosis associated with isolated infarction of the substantia nigra pars reticulata. Ann Neurol 27:500–504

    PubMed  CAS  Google Scholar 

  • McNaught KS, Kapustin A, Jackson T, Jengelley T-A, Baptiste R, Shashidharan P et al (2004) Brainstem pathology in DYT1 primary torsion dystonia. Ann Neurol 56:540–547

    PubMed  CAS  Google Scholar 

  • McRitchie DA, Hardman CD, Halliday GM (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 364:121–150

    PubMed  CAS  Google Scholar 

  • Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27:585–588

    PubMed  CAS  Google Scholar 

  • Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28K. J Comp Neurol 365:628–639

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283:611–633

    PubMed  CAS  Google Scholar 

  • Mettler FA (1943) Extensive unilateral cerebral removals in the primate. Physiological effects and resultant degeneration. J Comp Neurol 79:185–243

    Google Scholar 

  • Middleton FA, Strick PL (2000) A revised neuroanatomy of frontal subcortical circuits. In: Lichter DG, Cummings JL (eds) Frontal subcortical circuits in psychiatry and neurology. Guilford, New York, pp 44–58

    Google Scholar 

  • Mink JW (2003) The basal ganglia and involuntary movements. Arch Neurol 60:1365–1368

    PubMed  Google Scholar 

  • Mitchell LJ, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59:691–719

    PubMed  CAS  Google Scholar 

  • Mitrofanis J (2005) Some certainty for the ‘zone of uncertainty’? Exploring the function of the zona incerta. Neuroscience 130:1–15

    PubMed  CAS  Google Scholar 

  • Mitrofanis J, Mikuletic L (1999) Organisation of the cortical projection to the zona incerta of the thalamus. J Comp Neurol 412:173–185

    PubMed  CAS  Google Scholar 

  • Mizukawa K, McGeer PL, Tago H, Peng JH, McGeer EG, Kimura H (1986) The cholinergic system of the human hindbrain studied by choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Brain Res 379:39–55

    PubMed  CAS  Google Scholar 

  • Molnar GF, Pilliar A, Lozano AM, Dostrovsky JO (2005) Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinson’s disease. J Neurophysiol 93:3094–3101

    PubMed  CAS  Google Scholar 

  • Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:588–630

    PubMed  CAS  Google Scholar 

  • Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 443:86–103

    PubMed  CAS  Google Scholar 

  • Mori H, Motoi Y, Kobayashi T, Hasegawa M, Yamamura A, Iwatsubo T, Mizuno Y (2001) Tau accumulation in a patient with pallidonigroluysian atrophy. Neurosci Lett 309:89–92

    PubMed  CAS  Google Scholar 

  • Munchau A, Mathen D, Cox T, Quinn NP, Marsden CD, Bhatia KP (2000) Unilateral lesions of the globus pallidus: report of four patients presenting with focal or segmental dystonia. J Neurol Neurosurg Psychiatry 69:494–498

    PubMed Central  PubMed  CAS  Google Scholar 

  • Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H et al (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurol 107:814–820

    Google Scholar 

  • Nadjar A, Brotchie JM, Guigoni C, Li Q, Zhou S-B, Wang G-J et al (2006) Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: a call for a reappraisal of the functional organization of the basal ganglia. J Neurosci 26:8653–8661

    PubMed  CAS  Google Scholar 

  • Nambu A (2008) Seven problems on the basal ganglia. Curr Opin Neurobiol 18:595–604

    PubMed  CAS  Google Scholar 

  • Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor cortex. J Neurosci 16:2671–2683

    PubMed  CAS  Google Scholar 

  • Nambu A, Tokuno H, Inase M, Takada M (1997) Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239:13–16

    PubMed  CAS  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43:111–117

    PubMed  Google Scholar 

  • Nauta HJW, Cole M (1978) Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat. J Comp Neurol 180:1–16

    PubMed  CAS  Google Scholar 

  • Nauta WJH, Mehler WR (1966) Projections from the lentiform nucleus in the monkey. Brain Res 1:3–42

    PubMed  CAS  Google Scholar 

  • Nielsen MS, Bjarkam CR, Sørensen JC, Bojsen-Møller M, Sunde NA, Østergaard K (2007) Chronic subthalamic high-frequency deep brain stimulation in Parkinson’s disease – a histopathological study. Eur J Neurol 14:132–138

    PubMed  CAS  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: ­neurobiology. 1. Anatomy and connectivity. Brain Res Rev 12:117–165

    Google Scholar 

  • Obeso JA, Guridi J, Rodríguez-Oroz MC, Macias R, Rodríguez M, Alvarez L, Lopez G (2000a) Functional models of the basal ganglia: Where are we? In: Lozano AM (ed) Movement Disorder Surgery, vol 15, Prog Neurol Surg. Karger, Basel, pp 58–77

    Google Scholar 

  • Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000b) Pathophysiology of the bsal ganglia in Parkinson’s disease. Trends Neurosci 23(Suppl):S8–S19

    PubMed  CAS  Google Scholar 

  • Ohye C (1998) Thalamotomy for Parkinson’s disease and other types of tremor: Part I – Historical background and techniques. In: Tasker RR (ed) Textbook of stereotactic and functional neurosurgery. McGraw-Hill, New York, pp 1167–1178

    Google Scholar 

  • Olanow CW (2007) Pathogenesis of cell death in Parkinson’s disease – 2007. Mov Disord 22(Suppl):S335–S342

    PubMed  Google Scholar 

  • Olanow CW, McNaught K (2008) The etiopathogenesis of Parkinson’s disease: basic mechanisms of neurodegeneration. In: Hallett M, Poewe W (eds) Therapeutics of Parkinson’s disease and other movement disorders. Wiley-Blackwell, Oxford, pp 3–23

    Google Scholar 

  • Olszewski J (1952) The thalamus of the Macaca Mulatta. An atlas for use with the stereotactic instrument. Karger, Basel

    Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel, New York

    Google Scholar 

  • Oppenheimer DR (1984) Diseases of the basal ganglia, cerebellum and motoneurons. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s neuropathology. Arnold, London, pp 699–747

    Google Scholar 

  • Ozawa T, Paviour D, Quinn NP, Josephs KA, Sangha H, Kilford L et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127:2657–2671

    PubMed  Google Scholar 

  • Ozelius LJ, Hewett JW, Page C, Bressman S, Kramer P, Shalish C et al (1997) The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 17:40–48

    PubMed  CAS  Google Scholar 

  • Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783

    PubMed  Google Scholar 

  • Pakkenberg B, Møller A, Gundersen HJG, Mouritzen Dam A, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54:30–33

    PubMed Central  PubMed  CAS  Google Scholar 

  • Parent A (1996) Carpenter’s human neuroanatomy, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Parent A, De Bellefeuille L (1983) The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method. Brain Res 278:11–27

    PubMed  CAS  Google Scholar 

  • Parent A, Hazrati L-N (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    PubMed  CAS  Google Scholar 

  • Parent A, Hazrati L-N (1995b) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154

    PubMed  CAS  Google Scholar 

  • Parent A, Smith Y (1987) Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods. Brain Res 436:296–310

    PubMed  CAS  Google Scholar 

  • Parent A, Mackey A, De Bellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in primates: a fluorescence retrograde double labeling study. Neuroscience 10:1137–1150

    PubMed  CAS  Google Scholar 

  • Parent A, Bouchard C, Smith Y (1984) The striatopallidal and striatonigral projections: two distinct fiber systems in primate. Brain Res 303:385–390

    PubMed  CAS  Google Scholar 

  • Parent A, Côté P-Y, Lavoie B (1995a) Chemical anatomy of primate basal ganglia. Prog Neurobiol 46:131–197

    PubMed  CAS  Google Scholar 

  • Parent A, Charara A, Pinault D (1995b) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698:280–284

    PubMed  CAS  Google Scholar 

  • Parent A, Cossette M, Lévesque M (2000a) Anatomical considerations in basal ganglia surgery. In: Lozano AM (ed) Movement disorder surgery, vol 15, Prog Neurol Surg. Karger, Basel, pp 21–30

    Google Scholar 

  • Parent A, Sato F, Wu Y, Gauthier J, Lévesque M, Parent M (2000b) Organization of the basal ganglia: the importance of axon collateralization. Trends Neurosci 23(Suppl):S20–S27

    PubMed  CAS  Google Scholar 

  • Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstructions. J Comp Neurol 439:162–175

    PubMed  CAS  Google Scholar 

  • Parkinson J (1817) An essay on the Shaking Palsy. Sherwood Neely and Jones, London

    Google Scholar 

  • Paulus W, Jellinger K (1991) The neuropathological basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50:743–755

    PubMed  CAS  Google Scholar 

  • Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8:3–32

    PubMed  CAS  Google Scholar 

  • Péchadre JC, Larochelle L, Poirier LJ (1976) Parkinsonian akinesia, rigidity and tremor in the monkey: histopathological and neuropharmacological study. J Neurol Sci 28:147–157

    PubMed  Google Scholar 

  • Percheron G (2004) The thalamus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 592–675

    Google Scholar 

  • Percheron G, Yelnik J, François C (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227:214–227

    PubMed  CAS  Google Scholar 

  • Percheron G, François C, Talbi B, Meder JF, Fénelon G, Yelnik J (1993) The primate motor thalamus analysed with reference to subcortical afferent territories. Stereotact Funct Neurosurg 60:32–41

    PubMed  CAS  Google Scholar 

  • Percheron G, François C, Talbi B, Yelnik J, Fénelon G (1996) The primate motor thalamus. Brain Res Rev 22:93–181

    PubMed  CAS  Google Scholar 

  • Pessiglione M, Guehl D, Rolland AS, François C, Hirsch EC, Féger J, Tremblay L (2005) Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional segregation within basal ganglia circuits. J Neurosci 25:1523–1531

    PubMed  CAS  Google Scholar 

  • Peterson BS, Skudlarski P, Anderson AW, Zhang H, Gatenby JC, Lacadie CM et al (1998) A functional magnetic resonance imaging study of tic suppression in Tourette syndrome. Arch Gen Psychiatry 55:326–333

    PubMed  CAS  Google Scholar 

  • Pette H (1923) Zur Lokalisation hemichoreatischer Bewegungsstörungen. Dtsch Z Nervenheilk 7:270–271

    Google Scholar 

  • Plaha P, Ben-Shlomo Y, Patel NK, Gill SS (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 129:1732–1747

    PubMed  Google Scholar 

  • Poewe W, Scherfler C (2003) Role of dopamine transporter imaging in investigation of parkinsonian syndromes in routine clinical practice. Mov Disord 18(Suppl 7):S16–S21

    PubMed  Google Scholar 

  • Poewe W, Wenning GK (2007) Parkinson plus disorders. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby-Elsevier, Philadelphia, PA, pp 961–982

    Google Scholar 

  • Poirier LJ (1960) Experimental and histological study of midbrain dyskinesias. J Neurophysiol 23:534–551

    PubMed  CAS  Google Scholar 

  • Poirier LJ, Giguère M, Marchand R (1983) Comparative morphology of the substantia nigra and ventral tegmental area in the monkey, cat and rat. Brain Res Bull 11:371–397

    PubMed  CAS  Google Scholar 

  • Pollak P, Benabid AL, Gross C et al (1993) Effects of the stimulation of the subthalamic nucleus in Parkinson’s disease. Rev Neurol (Paris) 149:175–176

    CAS  Google Scholar 

  • Pong M, Horn KM, Gibson AR (2008) Pathways for control of face and neck musculature by the basal ganglia and cerebellum. Brain Res Rev 58:249–264

    PubMed  Google Scholar 

  • Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington’s disease and excitotoxic animal models. J Neurosci 15:3775–3787

    PubMed  CAS  Google Scholar 

  • Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16:508–1521

    Google Scholar 

  • Postuma RB, Lang AE (2003) Hemiballism: Revisiting a classic disorder. Lancet Neurol 2:661–668

    PubMed  Google Scholar 

  • Prensa L, Giménez-Amaya JM, Parent A (1999) Chemical heterogeneity of the striosomal compartment in the human striatum. J Comp Neurol 413:603–618

    PubMed  CAS  Google Scholar 

  • Quartarone A, Rizzo V, Morgante F (2008) Clinical features of dystonia: a pathophysiological revisitation. Curr Opin Neurol 21:484–490

    PubMed  Google Scholar 

  • Quinn N (1989) Multiple system atrophy – the nature of the beast. J Neurol Neurosurg Psychiatry 52(Suppl):78–89

    PubMed Central  Google Scholar 

  • Raeva S, Vainberg N, Dubinin V (1999a) Analysis of spontaneous activity patterns of human thalamic ventrolateral neurons and their modifications due to functional brain changes. Neuroscience 88:365–376

    PubMed  CAS  Google Scholar 

  • Raeva S, Vainberg N, Tikhonov Y, Tsetlin I (1999b) Analysis of evoked activity patterns of human thalamic ventrolateral neurons during verbally ordered voluntary movements. Neuroscience 88:377–392

    PubMed  CAS  Google Scholar 

  • Ragsdale CW Jr, Graybiel AM (1981) The fronto-striatal projection in the cat and monkey and its relationship to inhomogeneities established by acetylcholinesterase histochemistry. Brain Res 208:259–266

    PubMed  Google Scholar 

  • Rauch S, Baxter L (1998) Neuroimaging of OCD and related disorders. In: Jenike M, Baer L, Minichiello W (eds) Obsessive-compulsive disorders: practical management. Mosby, Boston, MA, pp 289–317

    Google Scholar 

  • Rauch SL, Dougherty DD, Malone D, Rezai A, Friehs G, Fischman AJ et al (2006) A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J Neurosurg 104:558–565

    PubMed  Google Scholar 

  • Ravina B, Camicioli R, Como PG, Marsh L, Jankovic J, Weintraub D, Elm J (2007) The impact of depressive symptoms in early Parkinson’s disease. Neurology 69:342–347

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rebeiz JJ, Kolodny EH, Richardson EP (1967) Corticodentatonigral degeneration with neuronal achromasia: a progressive disorder in late adult life. Trans Am Neurol Assoc 92:23–26

    PubMed  CAS  Google Scholar 

  • Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington’s disease. Proc Natl Acad Sci USA 85:5733–5737

    PubMed Central  PubMed  CAS  Google Scholar 

  • Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 38:277–301

    PubMed  CAS  Google Scholar 

  • Riley DE, Lang AE, Lewis A, Resch L, Ashby P, Hornykiewicz O, Black S (1990) Cortico-basal ganglionic degeneration. Neurology 40:1203–1212

    PubMed  CAS  Google Scholar 

  • Rostasy K, Augood SJ, Hewett JW, Chung-on Leung J, Sasaki H, Ozelius LJ et al (2003) TorsinA protein and neuropathology in early onset generalized dystonia with GAG deletion. Neurobiol Dis 12:11–24

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M (1994) Cerebellothalamocortical and pallidothalamocortical projections to tyhe primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol 345:185–213

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Tanné J, Moret Y, Boussaoud D (1999) Origin of thalamic inputs to the primary, premotor, and supplementary motor cortical areas and to area 46 in macaque monkeys: a multiple retrograde tracing study. J Comp Neurol 409:131–152

    PubMed  CAS  Google Scholar 

  • Rudow G, O’Brien R, Savonenko AV, Resnick SM, Zonderman AB, Pletnikova O et al (2008) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol (Berl) 115:461–470

    Google Scholar 

  • Russchen FT, Bakst I, Amaral DG, Price JL (1985) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329:241–257

    PubMed  CAS  Google Scholar 

  • Saint-Cyr JA, Ungerleider LG, Desimone R (1990) Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J Comp Neurol 298:129–156

    PubMed  CAS  Google Scholar 

  • Sakai ST, Inase M, Tanji J (1999) Pallidal and cerebellar inputs to thalamocortical neurons projecting to the supplementary motor area in Macaca fuscata: a triple-labeling light microscopic study. Anat Embryol (Berl) 199:1–19

    Google Scholar 

  • Sakai ST, Stepniewska I, Qi HX, Kaas JH (2000) Pallidal and cerebellar afferents to pre-supplementary motor area thalamocortical neurons in the owl monkey: a multiple labeling study. J Comp Neurol 417:164–180

    PubMed  CAS  Google Scholar 

  • Sambrook MA, Crossman AR, Mitchell I, Robertson RG, Clarke CE, Boyce S (1989) The basal ganglia mechanisms mediating primate models of movement disorders. In: Crossman AR, Sambrook MA (eds) Neural mechanisms in disorders of movement. Libbey, London, pp 123–144

    Google Scholar 

  • Saper CB (1990) Cholinergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, CA, pp 1095–1113

    Google Scholar 

  • Saper CB, Petito CK (1982) Correspondence of melanin-pigmented neurons in the human brain with A1-A14 catecholamine cell groups. Brain 105:87–102

    PubMed  CAS  Google Scholar 

  • Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in systems degeneration, including Alzheimer’s disease. Neuroscience 23:389–398

    PubMed  CAS  Google Scholar 

  • Sato F, Lavalleé P, Lévesque M, Parent A (2000a) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417:17–31

    PubMed  CAS  Google Scholar 

  • Sato F, Parent M, Lévesque M, Parent A (2000b) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424:142–152

    PubMed  CAS  Google Scholar 

  • Saxena S, Brody AL, Schwartz JM, Baxter LR (1998) Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl 35:26–37

    PubMed  Google Scholar 

  • Scatton B, Dennis T, L’Heureux R, Montfort J-C, Duyckaerts C, Javoy-Agid F (1986) Degeneration of noradrenergic and serotonergic but not dopaminergic neurons in the lumbar spinal cord of parkinsonian patients. Brain Res 380:181–185

    PubMed  CAS  Google Scholar 

  • Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Schapira AHV (2007) Parkinson’s disease. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby-Elsevier, Philadelphia, PA, pp 927–960

    Google Scholar 

  • Schell GR, Strick PL (1984) The origin of thalamic inputs to the arcuate premotor and supplementary premotor areas. J Neurosci 4:539–560

    PubMed  CAS  Google Scholar 

  • Scherfler C, Seppi K, Donnemiller E, Goebel G, Brenneis C, Virgolini I et al (2005) Voxel-wise analysis of [123I] beta-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson’s disease. Brain 128:1605–1612

    PubMed  Google Scholar 

  • Schneider JS, Yuwiler A, Markham CH (1987) Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP. Brain Res 411:144–150

    PubMed  CAS  Google Scholar 

  • Schultz W (1986) Activity of pars reticulata neurons of monkey substantia nigra in relation to motor, sensory, and complex events. J Neurophysiol 55:660–677

    PubMed  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    PubMed  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297:359–376

    PubMed  CAS  Google Scholar 

  • Shink E, Sidibé M, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 382:348–363

    PubMed  CAS  Google Scholar 

  • Shy GM, Drager GA (1960) A neurological syndrome associated with orthostatic hypotension: a clinico-pathological study. Arch Neurol 2:522–527

    Google Scholar 

  • Sidibé M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382:323–347

    PubMed  Google Scholar 

  • Smith MC (1966) Pathological findings subsequent to stereotactic lesions. J Neurosurg 24:443–445

    Google Scholar 

  • Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. Trends Neurosci 23(Suppl):S28–S33

    PubMed  CAS  Google Scholar 

  • Smith Y, Hazrati L-N, Parent A (1990) Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol 294:306–323

    PubMed  CAS  Google Scholar 

  • Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387

    PubMed  CAS  Google Scholar 

  • Speelman JD (1991) Parkinson’s disease and stereotaxic neurosurgery. University of Amsterdam, Thesis

    Google Scholar 

  • Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis–parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237:517–522

    PubMed  CAS  Google Scholar 

  • Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol 271:473–492

    PubMed  CAS  Google Scholar 

  • Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10:333–359

    PubMed  CAS  Google Scholar 

  • Stefanova N, Bücke P, Duerr S, Wenning GK (2009) Multiple system atrophy: an update. Lancet Neurol 8:1172–1178

    PubMed  CAS  Google Scholar 

  • Stepniewska I, Preuss TM, Kaas JH (1994a) Architectonic subdivisions of the motor thalamus of owl monkeys: Nissl, acetylcholinesterase, and cytochrome oxidase patterns. J Comp Neurol 349:536–557

    PubMed  CAS  Google Scholar 

  • Stepniewska I, Preuss TM, Kaas JH (1994b) Thalamic connections of the primary motor cortex (M1) of owl monkeys. J Comp Neurol 349:558–582

    PubMed  CAS  Google Scholar 

  • Stern G (1966) The effects of lesions in the substantia nigra. Brain 89:449–478

    PubMed  CAS  Google Scholar 

  • Su M, Yoshida Y, Hirata Y, Watahiki Y, Nagata K (2001) Primary involvement of the motor area in association with the nigrostriatal pathway in multiple system atrophy: neuropathological and morphometric evaluations. Acta Neuropathol (Berl) 101:57–65

    CAS  Google Scholar 

  • Svennilson E, Torvik A, Lowe R, Leksell L (1960) Treatment of parkinsonism by stereotactic thermolesions in the pallidal region. A clinical evaluation of 81 cases. Acta Psychiatr Scand 35:358–377

    PubMed  CAS  Google Scholar 

  • Szabo J (1962) Topical distribution of the striatal efferents in the monkey. Exp Neurol 5:21–36

    Google Scholar 

  • Szabo J (1967) The efferent projections of the putamen in the monkey. Exp Neurol 19:463–476

    PubMed  CAS  Google Scholar 

  • Szabo J (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp Neurol 27:1–15

    PubMed  CAS  Google Scholar 

  • Szabo J (1972) The course and distribution of efferents from the tail of the caudate nucleus in the monkey. Exp Neurol 37:562–572

    PubMed  CAS  Google Scholar 

  • Szabo J (1980) Organization of the ascending striatal afferents in monkeys. J Comp Neurol 189:307–321

    PubMed  CAS  Google Scholar 

  • Tasker RR (1998) Thalamotomy for Parkinson’s disease and other types of tremor: Part II – the outcome of thalamotomy for tremor. In: Tasker RR (ed) Textbook of stereotactic and functional neurosurgery. McGraw-Hill, New York, pp 1179–1198

    Google Scholar 

  • Temel Y, Blokland A, Steinbusch HWM, Visser-Vandewalle V (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76:393–413

    PubMed  CAS  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Cruysberg JRM, Hori A, Shiota K, Verbist B (2006) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical neuroembryology: development and developmental disorders of the human central nervous system. Springer, Berlin, pp 345–428

    Google Scholar 

  • Thu DCV, Oorschot DE, Tippett LJ, Nana AL, Hogg VM, Synek BJ et al (2010) Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain 133:1094–1110

    PubMed  Google Scholar 

  • Tinazzi M, Rosso T, Fiaschi A (2003) Role of the somatosensory system in primary dystonia. Mov Disord 18:605–622

    PubMed  Google Scholar 

  • Tippett LJ, Waldvogel HJ, Thomas SJ, Hogg VM, van Roon-Mom W, Synek BJ et al (2007) Striosomes and mood dysfunction in Huntington’s disease. Brain 130:206–221

    PubMed  Google Scholar 

  • Tolnay M, Probst A (1999) Review: Tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol 25:171–187

    PubMed  CAS  Google Scholar 

  • Tomlinson BE, Corsellis JAN (1984) Aging and the dementias. In: Adams HJ, Corsellis JAN, Duchen LW (eds) Greenfield’s neuropathology. Arnold, London, pp 951–1025

    Google Scholar 

  • Trepanier LL, Saint-Cyr JA, Lozano AM, Lang AE (1998) Neuropsychological consequences of posteroventral pallidotomy for the treatment of Parkinson’s disease. Neurology 51:207–215

    PubMed  CAS  Google Scholar 

  • Trétiakoff C (1919) Contribution à l’étude de l’anatomie pathologique du locus niger de Soemmering avec quelqeus déductions relatives à la pathogénie des troubles de tonus musculaire et de la maladie de Parkinson. Thèse No 293, Université de Paris

    Google Scholar 

  • Tsai C (1925) The optic tracts and centres of the opossum Didelphis virginiana. J Comp Neurol 294:306–323

    Google Scholar 

  • Tsuchiya K, Ozawa E, Haga C, Watabiki S, Ikeda M, Sano M, Ooe K, Taki K, Ikeda K (2000) Constant involvement of the Betz cells and pyramidal tract in multiple system atrophy: a clinicopathological study of seven autopsy cases. Acta Neuropathol (Berl) 99:628–636

    CAS  Google Scholar 

  • Uhl GR, Hedreen JC, Price DL (1985) Parkinson’s disease: loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 35:1215–1218

    PubMed  CAS  Google Scholar 

  • Ulfig N, Neudörfer F, Bohl J (2001) Development-related expression of AKAP79 in the striatal compartments of the human brain. Cells Tissues Organs 168:319–329

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48

    PubMed  CAS  Google Scholar 

  • Valanne L, Ketonen L, Majander A, Suomalainen A, Pihko H (1998) Neuroradiological findings in children with mitochondrial disorders. AJNR Am J Neuroradiol 19:369–377

    PubMed  CAS  Google Scholar 

  • van Domburg PHMF, ten Donkelaar HJ (1991) The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging and aging diseases. Adv Anat Embryol Cell Biol 121:1–132

    PubMed  Google Scholar 

  • Van Hoesen GW, Yeterian EH, Lavizzo-Mourey R (1981) Widespread corticostriate projections from temporal cortex in the rhesus monkey. J Comp Neurol 199:205–219

    PubMed  Google Scholar 

  • Verny M, Duyckaerts C, Agid Y, Hauw J-J (1996a) The significance of cortical pathology in progressive supranuclear palsy. Clinicopatho­logical data in 10 cases. Brain 119:1123–1136

    PubMed  Google Scholar 

  • Verny M, Jellinger KA, Hauw J-J, Bancher C, Litvan I, Agid Y (1996b) Progressive supranuclear palsy: a clinicopathological study of 21 cases. Acta Neuropathol (Berl) 91:427–431

    CAS  Google Scholar 

  • Vis JC, Schipper E, de Boer-van Huizen RT, Verbeek MM, de Waal RMW, Wesseling P, ten Donkelaar HJ, Kremer B (2005) Expression pattern of apoptosis-markers in Huntington’s disease. Acta Neuropathol (Berl) 109:321–328

    CAS  Google Scholar 

  • Vitek JL, Ashe J, DeLong MR, Alexander GE (1994) Physiologic properties and somatotopic organization of the primate motor thalamus. J Neurophysiol 71:1498–1513

    PubMed  CAS  Google Scholar 

  • Vitek JL, Ashe J, DeLong MR, Kaneoke Y (1998) Microstimulation of primate motor thalamus: somatotopic organization and differential distribution of evoked motor responses among subnuclei. J Neuro­physiol 75:2486–2495

    Google Scholar 

  • Vogt C, Vogt O (1919) Zur Kenntnis der pathologischen Veränderungen des Striatums und des Pallidums und zur Pathophysiologie der dabei auftretenden Krankheitserscheinungen. Sitzungsber Heidelb Akad Wiss 10, B14:1–56

    Google Scholar 

  • Vogt C, Vogt O (1920) Zur Lehre der Erkrankungen des striären Systems. J Psychol Neurol (Lpz) 25:627–846

    Google Scholar 

  • Volkmann J (2008) Surgery for Parkinson’s disease. In: Hallett M, Poewe W (eds) Therapeutics of Parkinson’s disease and other movement disorders. Wiley-Blackwell, Oxford, pp 121–143

    Google Scholar 

  • von Monakow C (1895) Experimentelle und pathologisch-anatomische Untersuchungen über die Haubenregion, den Sehhügel und die Regio subthalamica, nebst Beiträgen zur Kenntnis früherworbenen Gross- und Kleinhirndefekte. Arch Psychiatr Nervenkr 27:1–128

    Google Scholar 

  • Voneida T (1960) An experimental study of the course and destination of fibers arising in the head of the caudate nucleus in the cat and monkey. J Comp Neurol 115:75–87

    PubMed  CAS  Google Scholar 

  • Vonsattel JPG, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    PubMed  CAS  Google Scholar 

  • Vonsattel JPG, Lianski M (2004) Huntington’s disease. In: Esiri MM, Lee VM-Y, Trojanowski JQ (eds) The neuropathology of dementia, 2nd edn. Cambridge University Press, Cambridge, pp 376–401

    Google Scholar 

  • Vonsattel J-P, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    PubMed  CAS  Google Scholar 

  • Walker AE (1938) The primate thalamus. University of Chicago Press, Chicago

    Google Scholar 

  • Walter U, Niehaus L, Probst T, Benecke R, Meyer BU, Dressler D (2003) Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology 60:74–77

    PubMed  CAS  Google Scholar 

  • Warren NM, Piggott MA, Perry EK, Burn DJ (2005) Cholinergic systems in progressive supranuclear palsy. Brain 128:239–249

    PubMed  CAS  Google Scholar 

  • Waters CM, Peck R, Rossor M, Reynolds GP, Hunt SP (1988) Immunocytochemical studies in the basal ganglia and substantia nigra in Parkinson’s disease and Huntington’s chorea. Neuroscience 24:419–438

    Google Scholar 

  • Wenning GK, Jellinger KA (2005a) The role of alpha-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol (Berl) 109:129–140

    CAS  Google Scholar 

  • Wenning GK, Jellinger KA (2005b) The role of α-synuclein and tau in neurodegenerative movement disorders. Curr Opin Neurol 18:357–362

    PubMed  CAS  Google Scholar 

  • Wenning GK, Ben-Shlomo Y, Magalhaes M, Daniel SE, Quinn NP (1995) Clinicopathological study of 35 cases of multiple system atrophy. J Neurol Neurosurg Psychiatry 58:160–166

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wenning GK, Tison F, Ben-Shlomo Y, Daniel SE, Quinn NP (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12:133–147

    PubMed  CAS  Google Scholar 

  • Whittier JR (1947) Ballism and subthalamic nucleus. Arch Neurol Psychiatry 58:672–692

    PubMed  CAS  Google Scholar 

  • Whittier JR, Mettler FA (1949) Studies on the subthalamus of the rhesus monkey. II. Hyperkinesia and other physiological effects of subthalamus lesions with special reference to the subthalamic nucleus of Luys. J Comp Neurol 90:319–372

    PubMed  CAS  Google Scholar 

  • Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758

    PubMed  CAS  Google Scholar 

  • Wichmann T, Bergman H, DeLong MR (1994a) The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 72:494–506

    PubMed  CAS  Google Scholar 

  • Wichmann T, Bergman H, DeLong MR (1994b) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530

    PubMed  CAS  Google Scholar 

  • Wichmann T, DeLong MR, Vitel JL (2000) Pathophysiological considerations in basal ganglia surgery: role of the basal ganglia in hypokinetic and hyperkinetic movement disorders. In: Lozano AM (ed) Movement disorder surgery, vol 15, Prog Neurol Surg. Karger, Basel, pp 31–57

    Google Scholar 

  • Wiesendanger E, Clarke S, Kraftsik R, Tardif E (2004) Topography of cortico-striatal connections in man: anatomical evidence for parallel organization. Eur J Neurosci 20:1915–1922

    PubMed  CAS  Google Scholar 

  • Williams DR, Lees AJ (2009) Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 8:270–279

    PubMed  Google Scholar 

  • Wilson SAK (1914) An experimental research into the anatomy and physiology of the corpus striatum. Brain 36:427–492

    Google Scholar 

  • Yelnik J, Percheron G, François C (1984) A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial disposition of dendritic arborization. J Comp Neurol 227:200–213

    PubMed  CAS  Google Scholar 

  • Yelnik J, François C, Percheron G, Heyner S (1987) Golgi study of the primate substantia nigra. I. Quantitative morphology and typology of nigral neurons. J Comp Neurol 265:455–472

    PubMed  CAS  Google Scholar 

  • Yeterian EH, Pandya DN (1991) Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. J Comp Neurol 312:43–67

    PubMed  CAS  Google Scholar 

  • Yeterian EH, Pandya DN (1993) Corticostriatal connections of the parietal association cortices in rhesus monkeys. J Comp Neurol 332:175–197

    PubMed  CAS  Google Scholar 

  • Yeterian EH, Pandya DN (1995) Corticostriatal connections of extrastriate visual areas in rhesus monkeys. J Comp Neurol 352:436–457

    PubMed  CAS  Google Scholar 

  • Yeterian EH, Pandya DN (1998) Corticostriatal connections of the superior temporal region in rhesus monkeys. J Comp Neurol 399:384–402

    PubMed  CAS  Google Scholar 

  • Young AB, Albin RL, Penney JB (1989) Neuropharmacology of basal ganglia functions: relationship to pathophysiology of movement disorders. In: Crossman AR, Sambrook MA (eds) Neural mechanisms in disorders of movement. Libbey, London, pp 17–27

    Google Scholar 

  • Záborsky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L (1985) Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 14:427–453

    Google Scholar 

  • Zadikoff C, Lang AE (2005) Apraxia in movement disorders. Brain 128:1480–1497

    PubMed  Google Scholar 

  • Zech M, Bogerts B (1985) Methionine-enkephalin and substance P in the basal ganglia of normals, Parkinson patients. Huntington patients and schizophrenics. A qualitative immunohistochemical study. Acta Neuropathol (Berl) 68:32–38

    CAS  Google Scholar 

  • Zijlmans J, Thijssen HOM, Vogels OJM, Kremer HPH, Poels PJE, Schoonderwaldt HC et al (1995) MRI in patients suspected of vascular parkinsonism. Neurology 45:2183–2188

    PubMed  CAS  Google Scholar 

  • Zijlmans J, Daniel S, Hughes A, Révész T, Lees A (2004) A clinicopathological investigation of vascular parkinsonism (VP). Including clinical criteria for the diagnosis of VP. Mov Disord 19:630–640

    PubMed  Google Scholar 

  • Zrinzo L, Zrinzo LV, Tisch S, Limousin PD, Yousry TA, Afshar F, Hariz MI (2008) Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic ­resonance imaging protocol for direct localization. Brain 131:1588–1598

    PubMed  Google Scholar 

  • Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price DL (1987) Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 22:18–25

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J. (2011). Basal Ganglia. In: Clinical Neuroanatomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19134-3_11

Download citation

Publish with us

Policies and ethics