Skip to main content

Mechanics of the Cytoskeleton

  • Chapter
  • First Online:
Book cover Mechanical Integration of Plant Cells and Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 9))

Abstract

This chapter summarizes evidence for a cytoskeletal function in tensegral integration on both the organismal and the cellular levels. The plant cytoskeleton consists of two major elements, microtubules and actin filaments. The spatial organization of these elements is highly dynamic and changes fundamentally during the cell cycle, with conspicuous effects on the predicted stress–strain patterns. In interphase cells, microtubule bundles are thought to control the direction of cellulose deposition and thus to reinforce the axiality of cell growth. By microtubule–actin linkers such as the novel class of plant-specific kinesins with a calponin-homology domain, the rigid microtubules and the flexible actin bundles can be integrated into a system endowed with mechanical tensegrity. Because the plant cytoskeleton is relieved of the load-bearing task it fulfils in the non-walled animal cells, it has adopted sensory functions. Stretch-induced changes of protein conformation and stretch-activated ion channels seem to act in concert with the cytoskeleton, which acts either as a stress-focussing susceptor of mechanical force upon mechanosensitive ion channels or as a primary sensor that transduces mechanical force into differential growth of microtubule plus ends. This cytoskeletal tensegrity sensor is used both to integrate the growth of individual cells with mechanical load of tissues and organs and as an intracellular sensor used to control holistic properties of a cell such as organelle positioning. The distinct nonlinearity of microtubules in particular renders them an ideal tool for self-organization in response to mechanical input from the exterior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdrakhamanova A, Wang QY, Khokhlova L, Nick P (2003) Is microtubule assembly a trigger for cold acclimation? Plant Cell Physiol 44:676–686

    PubMed  CAS  Google Scholar 

  • Adames NR, Cooper JA (2000) Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J Cell Biol 149:863–874

    PubMed  CAS  Google Scholar 

  • Ahad A, Wolf J, Nick P (2003) Activation-tagged tobacco mutants that are tolerant to antimicrotubular herbicides are cross-resistant to chilling stress. Transgenic Res 12:615–629

    PubMed  CAS  Google Scholar 

  • Akashi T, Shibaoka H (1987) Effects of gibberellin on the arrangement and the cold stability of cortical microtubules in epidermal cells of pea internodes. Plant Cell Physiol 28:339–348

    CAS  Google Scholar 

  • Akashi T, Kawasaki S, Shibaoka H (1990) Stabilization of cortical microtubules by the cell wall in cultured tobacco cells. Effect of extensin on the cold stability of cortical microtubules. Planta 182:363–369

    Google Scholar 

  • Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322

    PubMed  CAS  Google Scholar 

  • Baluška F, Hlavačka A (2005) Plant formins come of age: something special about cross-walls. New Phytol 168:499–503

    PubMed  Google Scholar 

  • Baluška F, Jasik J, Edelmann HG, Salajová T, Volkmann D (2001) Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent. Dev Biol 231:113–124

    PubMed  Google Scholar 

  • Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491

    PubMed  Google Scholar 

  • Bannigan A, Wiedemeier AMD, Williamson RE, Overall RL, Baskin TI (2006) Cortical microtubule arrays lose uniform alignment between cells and are oryzalin resistant in the Arabidopsis mutant, radially swollen 6. Plant Cell Physiol 47:949–958

    PubMed  CAS  Google Scholar 

  • Bartolo ME, Carter JV (1991a) Microtubules in the mesophyll cells of nonacclimated and cold-acclimated spinach. Plant Physiol 97:175–181

    PubMed  CAS  Google Scholar 

  • Bartolo ME, Carter JV (1991b) Effect of microtubule stabilization on the freezing tolerance of mesophyll cells of spinach. Plant Physiol 97:182–187

    PubMed  CAS  Google Scholar 

  • Bartolo ME, Carter JV (1992) Lithium decreases cold-induced microtubule depolymerization in mesophyll cells of spinach. Plant Physiol 99:1716–1718

    PubMed  CAS  Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    PubMed  CAS  Google Scholar 

  • Baskin TI, Bivens NJ (1995) Stimulation of radial expansion in Arabidopsis roots by inhibitors of actomyosin and vesicle secretion but not by various inhibitors of metabolism. Planta 197:514–521

    PubMed  CAS  Google Scholar 

  • Baskin TI, Wilson JE (1997) Inhibitors of protein kinases and phosphatases alter root morphology and disorganize cortical microtubules. Plant Physiol 113:493–502

    PubMed  CAS  Google Scholar 

  • Bichet A, Desnos T, Turner S, Grandjean O, Höfte H (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J 25:137–148

    PubMed  CAS  Google Scholar 

  • Bisgrove SR, Lee YRJ, Liu B, Peters NT, Kropf DL (2008) The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant Cell 20:396–410

    PubMed  CAS  Google Scholar 

  • Björkman T (1988) Perception of gravity by plants. Adv Bot Res 15:1–4

    Google Scholar 

  • Blancaflor EB (2000) Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.). J Plant Growth Regul 19:406–414

    PubMed  CAS  Google Scholar 

  • Blancaflor EB, Hasenstein KH (1993) Organization of cortical microtubules in graviresponding maize roots. Planta 191:230–237

    Google Scholar 

  • Bokros CL, Hugdahl JD, Blumenthal SSD, Morejohn LC (1996) Proteolytic analysis of polymerized maize tubulin: regulation of microtubule stability to low temperature and Ca2+ by the carboxyl terminus of β-tubulin. Plant Cell Environ 19:539–548

    CAS  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    PubMed  CAS  Google Scholar 

  • Breviario D (2008) Plant tubulin genes: regulatory and evolutionary aspects. Plant Cell Monogr 11:207–232

    CAS  Google Scholar 

  • Brown RC, Lemmon BE (2007) The pleiomorphic plant MTOC: An evolutionary perspective. J Int Plant Biol 49:1142–1153

    Google Scholar 

  • Buder J (1920) Neue phototropische Fundamentalversuche. Ber Dtsch Bot Ges 38:10–19

    Google Scholar 

  • Buder J (1961) Der Geotropismus der Characeenrhizoide. Ber Dtsch Bot Ges 74:14–23

    Google Scholar 

  • Burk DH, Ye ZH (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule severing protein. Plant Cell 14:2145–2160

    PubMed  CAS  Google Scholar 

  • Burk DH, Liu B, Zhong R, Morrison WH, Ye ZH (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13:807–827

    PubMed  CAS  Google Scholar 

  • Buschmann H, Fabri CO, Hauptmann M, Hutzler P, Laux T, Lloyd CW, Schäffner AR (2004) Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol 14:1515–1521

    PubMed  CAS  Google Scholar 

  • Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel PP2A regulatory subunit essential for the control of cortical cytoskeleton. Plant Cell 14:833–845

    PubMed  CAS  Google Scholar 

  • Campanoni P, Blasius B, Nick P (2003) Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol 133:1251–1260

    PubMed  CAS  Google Scholar 

  • Canut H, Carrasco A, Galaud J-P, Cassan C, Bouyssou H, Vita N, Ferrara P, Pont-Lezica R (1998) High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall. Plant J 16:63–71

    PubMed  CAS  Google Scholar 

  • Cárdenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146:1611–1621

    PubMed  Google Scholar 

  • Chan J, Calder G, Fox S, Lloyd C (2007) Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat Cell Biol 9:171–175

    PubMed  CAS  Google Scholar 

  • Collings DA (2008) Crossed-wires: interactions and cross-talk between the microtubule and micro. lament networks in plants. Plant Cell Monogr 11:47–79

    CAS  Google Scholar 

  • Collings DA, Lill AW, Himmelspach R, Wasteneys GO (2006) Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana. New Phytol 170:275–290

    PubMed  CAS  Google Scholar 

  • Dhonukshe P, Mathur J, Hülskamp M, Gadella TWJ (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11

    PubMed  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    CAS  Google Scholar 

  • Durso NA, Cyr RJ (1994) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor 1α. Plant Cell 6:893–905

    PubMed  CAS  Google Scholar 

  • Eckert BS, Yeagle PL (1988) Acrylamide treatment of PtK1 cells causes dephosphorylation of keratin polypeptides. Cell Motil Cytoskelet 11:24–30

    CAS  Google Scholar 

  • Edwards ES, Roux SJ (1994) Limited period of graviresponsiveness in germinating spores of Ceratopteris richardii. Planta 195:150–152

    PubMed  CAS  Google Scholar 

  • Edwards ES, Roux SJ (1997) The influence of gravity and light on developmental polarity of single cells of Ceratopteris richardii gametophytes. Biol Bull 192:139–140

    PubMed  CAS  Google Scholar 

  • Elinson RP, Rowning B (1988) Transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 128:185–197

    PubMed  CAS  Google Scholar 

  • Fisher DD, Cyr RJ (1993) Calcium levels affect the ability to immunolocalize calmodulin to cortical microtubules. Plant Physiol 10:543–551

    Google Scholar 

  • Frey N, Klotz J, Nick P (2009) Dynamic bridges – a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol 50:1493–1506

    PubMed  CAS  Google Scholar 

  • Frey N, Klotz J, Nick P (2010) A kinesin with calponin-homology domain is involved in premitotic nuclear migration. J Exp Bot 61:3423–3437

    PubMed  CAS  Google Scholar 

  • Funada R (2008) Microtubules and the control of wood formation. Plant Cell Monogr 11:83–119

    CAS  Google Scholar 

  • Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The SPIRAL genes are required for directional control of cell plates elongation in Arabidopsis thaliana. Development 127:4443–4453

    PubMed  CAS  Google Scholar 

  • Gardiner JC, Harper JDI, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

    PubMed  CAS  Google Scholar 

  • Geiger B, Bershadsky A (2001) Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592

    PubMed  CAS  Google Scholar 

  • Gens JS, Fujiki M, Pickard BG (2000) Arabinogalactan protein and wall-associated kinase in a plasmalemmal reticulum with specialized vertices. Protoplasma 212:115–134

    PubMed  CAS  Google Scholar 

  • Gerhart J, Ubbeles G, Black S, Hara K, Kirschner M (1981) A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis. Nature 292:511–516

    PubMed  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    PubMed  CAS  Google Scholar 

  • Gianí S, Qin X, Faoro F, Breviario D (1998) In rice, oryzalin and abscisic acid differentially affect tubulin mRNA and protein levels. Planta 205:334–341

    PubMed  Google Scholar 

  • Giddings TH, Staehelin A (1988) Spatial relationship between microtubules and plasmamembrane rosettes during the deposition of primary wall microfibrils in Closterium spec. Planta 173:22–30

    Google Scholar 

  • Giddings TH, Staehelin A (1991) Microtubule-mediated control of microfibril deposition. A re-examination of the hypothesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 85–99

    Google Scholar 

  • Gierer A (1981) Generation of biological patterns and form: some physical, mathematical, and logical aspects. Progr Biophys Mol Biol 37:1–47

    CAS  Google Scholar 

  • Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexual rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934

    PubMed  CAS  Google Scholar 

  • Godbolé R, Michalke W, Nick P, Hertel R (2000) Cytoskeletal drugs and gravity-induced lateral auxin transport in rice coleoptiles. Plant Biol 2:176–181

    Google Scholar 

  • Goebel K (1908) Einleitung in die experimentelle Morphologie der Pflanzen. Teubner, Leipzig, pp 218–251

    Google Scholar 

  • Goode BL, Drubin DG, Barnes G (2000) Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol 12:63–71

    PubMed  CAS  Google Scholar 

  • Gossot O, Geitmann A (2007) Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta 226:405–416

    PubMed  CAS  Google Scholar 

  • Grabski S, Schindler M (1996) Auxins and cytokinins as antipodal modulators of elasticity within the actin network of plant cells. Plant Physiol 110:965–970

    PubMed  CAS  Google Scholar 

  • Grabski S, Arnoys E, Busch B, Schindler M (1998) Regulation of actin tension in plant cells by kinases and phosphatases. Plant Physiol 116:279–290

    CAS  Google Scholar 

  • Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138:1404–1405

    PubMed  CAS  Google Scholar 

  • Green PB (1980) Organogenesis – a biophysical view. Annu Rev Plant Physiol 31:51–82

    Google Scholar 

  • Gus-Mayer S, Naton B, Hahlbrock K, Schmelzer E (1998) Local mechanical stimulation induces components of the pathogen defense response in parsley. Proc Natl Acad Sci USA 95:8398–8403

    PubMed  CAS  Google Scholar 

  • Gustin MC, Sachs F, Sigurdson WJ, Ruknudin A, Bowman C (1991) Technical comments. Single channel mechanosensitive currents. Science 253:1195–1197

    Google Scholar 

  • Gutjahr C, Nick P (2006) Acrylamide inhibits gravitropism and destroys microtubules in rice coleoptiles. Protoplasma 227:211–222

    PubMed  CAS  Google Scholar 

  • Haberland G (1900) Über die Perzeption des geotropischen Reizes. Ber Dtsch Bot Ges 18:261–272

    Google Scholar 

  • Hamada T (2007) Microtubule-associated proteins in higher plants. J Plant Res 120:79–98

    PubMed  CAS  Google Scholar 

  • Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655

    PubMed  CAS  Google Scholar 

  • Hardham AR, Green PB, Lang JM (1980) Reorganization of cortical microtubules and cellulose deposition during leaf formation of Graptopetalum paraguayense. Planta 149:181–195

    CAS  Google Scholar 

  • Hasezawa S, Nozaki H (1999) Role of cortical microtubules in the orientation of cellulose microfibril deposition in higher-plant cells. Protoplasma 209:98–104

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Kato T (2006) Cortical control of plant microtubules. Curr Opin Plant Biol 9:5–11

    PubMed  CAS  Google Scholar 

  • Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48:445–449

    PubMed  CAS  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    PubMed  CAS  Google Scholar 

  • Hertel R, Friedrich U (1973) Abhängigkeit der geotropischen Krümmung der Chara-Rhizoide von der Zentrifugalbeschleunigung. Z Pflanzenphysiol 70:173–184

    Google Scholar 

  • Himmelspach R, Wymer CL, Lloyd CW, Nick P (1999) Gravity-induced reorientation of cortical microtubules observed in vivo. Plant J 18:449–453

    PubMed  CAS  Google Scholar 

  • Himmelspach R, Nick P (2001) Gravitropic microtubule reorientation can be uncoupled from growth. Planta 212:184–189

    PubMed  CAS  Google Scholar 

  • Hodick D (1994) Negative gravitropism in Chara protonemata: a model integrating the opposite gravitropic responses of protonemata and rhizoids. Planta 195:43–49

    PubMed  CAS  Google Scholar 

  • Holubowicz T, Boe AA (1969) Development of cold hardiness in apple seedlings treated with gibberellic acid and abscisic acid. J Am Soc Hortic Sci 94:661–664

    CAS  Google Scholar 

  • Holweg C, Süßlin C, Nick P (2004) Capturing in-vivo dynamics of the actin cytoskeleton. Plant Cell Physiol 45:855–863

    PubMed  CAS  Google Scholar 

  • Hush JM, Hawes CR, Overall RL (1990) Interphase microtubule re-orientation predicts a new cell polarity in wounded pea roots. J Cell Sci 96:47–61

    Google Scholar 

  • Igarashi H, Orii H, Mori H, Shimmen T, Sonobe S (2000) Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol 41:920–931

    PubMed  CAS  Google Scholar 

  • Ikushima T, Shimmen T (2005) Mechano-sensitive orientation of cortical microtubules during gravitropism in azuki bean epicotyls. J Plant Res 118:19–26

    PubMed  Google Scholar 

  • Ingber DE (2003a) Tensegrity I: cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    PubMed  CAS  Google Scholar 

  • Ingber DE (2003b) Tensegrity II: how structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408

    PubMed  CAS  Google Scholar 

  • Irving RM (1969) Characterization and role of an endogenous inhibitor in the induction of cold hardiness in Acer negundo. Plant Physiol 44:801–805

    PubMed  CAS  Google Scholar 

  • Irving RM, Lanphear FO (1968) Regulation of cold hardiness in Acer negundo. Plant Physiol 43:9–13

    PubMed  CAS  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    PubMed  CAS  Google Scholar 

  • Jaffe MJ, Leopold AC, Staples RA (2002) Thigmo responses in plants and fungi. Am J Bot 89:375–382

    PubMed  Google Scholar 

  • Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29:364–370

    PubMed  CAS  Google Scholar 

  • Jian LC, Sun LH, Lin ZP (1989) Studies on microtubule cold stability in relation to plant cold hardiness. Acta Bot Sin 31:737–741

    Google Scholar 

  • Jones RS, Mitchell CA (1989) Calcium ion involvement in growth inhibition of mechanically stressed soybean Glycine max seedlings. Physiol Plant 76:598–602

    PubMed  CAS  Google Scholar 

  • Kakimoto T, Shibaoka H (1987) Actin filaments in the preprophase band and phragmoplast of tobacco cells. Protoplasma 140:151–156

    Google Scholar 

  • Karki S, Holzbaur EL (1999) Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 1:45–53

    Google Scholar 

  • Katsuta J, Shibaoka H (1988) The roles of the cytoskeleton and the cell wall in nuclear positioning in tobacco BY-2 cells. Plant Cell Physiol 29:403–413

    CAS  Google Scholar 

  • Kell A, Glaser RW (1993) On the mechanical and dynamic properties of plant-cell membranes: their role in growth, direct gene transfer and protoplast fusion. J Theor Biol 160:41–62

    CAS  Google Scholar 

  • Kennard JL, Cleary AL (1997) Pre-mitotic nuclear migration in subsidiary mother cells of Tradescantia occurs in G1 of the cell cycle and requires F-actin. Cell Motil Cytoskelet 36:55–67

    CAS  Google Scholar 

  • Kerr GP, Carter JV (1990) Relationship between freezing tolerance of root-tip cells and cold stability ofmicrotubules in rye (Secale cereale L. Cv. Puma). Plant Physiol 93:77–82

    PubMed  CAS  Google Scholar 

  • Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2086

    PubMed  CAS  Google Scholar 

  • Kishimoto U (1968) Response of Chara internodes to mechanical stimulation. Ann Rep Biol Works Fac Sci Osaka Univ 16:61–66

    Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    PubMed  CAS  Google Scholar 

  • Kobayashi I, Kobayashi Y (2008) Microtubules and pathogen defence. Plant Cell Monogr 11:121–140

    CAS  Google Scholar 

  • Komis G, Apostolakos P, Galatis B (2002) Hyperosmotic stress induces formation of tubulin macrotubules in root-tip cells of Triticum turgidum: their probable involvement in protoplast volume control. Plant Cell Physiol 43:911–922

    PubMed  CAS  Google Scholar 

  • Komis G, Quader H, Galatis B, Apostolakos P (2006) Macrotubule-dependent protoplast volume regulation in plasmolysed root-tip cells of Triticum turgidum: involvement of phospholipase D. New Phytol 171:737–750

    PubMed  CAS  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    PubMed  CAS  Google Scholar 

  • Kutschera U (2008) The outer epidermal wall: design and physiological role of a composite structure. Ann Bot 101:615–621

    PubMed  CAS  Google Scholar 

  • Kuznetsov OA, Hasenstein KH (1996) Magnetophoretic induction of root curvature. Planta 198:87–94

    PubMed  CAS  Google Scholar 

  • Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363

    PubMed  CAS  Google Scholar 

  • Ledbetter MC, Porter KR (1963) A microtubule in plant cell fine structure. J Cell Biol 12:239–250

    Google Scholar 

  • Lintilhac PM, Vesecky TB (1984) Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307:363–364

    Google Scholar 

  • Lloyd CW, Traas JA (1988) The role of F-actin in determining the division plane of carrot suspension cells. Drug Stud Dev 102:211–221

    CAS  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    PubMed  CAS  Google Scholar 

  • Lucas J, Shaw SL (2008) Cortical microtubule arrays in the Arabidopsis seedling. Curr Opin Plant Biol 11:94–98

    PubMed  CAS  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24:445–466

    CAS  Google Scholar 

  • Maisch J, Nick P (2007) Actin is involved in auxin-dependent patterning. Plant Physiol., Plant Physiol 143:1695–1704.

    PubMed  CAS  Google Scholar 

  • McClinton RS, Sung ZR (1997) Organization of cortical microtubules at the plasma membrane in Arabidopsis. Planta 201:252–260

    PubMed  CAS  Google Scholar 

  • Modig C, Strömberg E, Wallin M (1994) Different stability of posttranslationally modified brain microtubules isolated from cold-temperate fish. Mol Cell Biochem 130:137–147

    PubMed  CAS  Google Scholar 

  • Monroy AF, Sarhan F, Dhindsa RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression. Plant Physiol 102:1227–1235

    PubMed  CAS  Google Scholar 

  • Morris NR (2003) Nuclear positioning: the means is at the ends. Curr Opin Cell Biol 15:54–59

    PubMed  CAS  Google Scholar 

  • Moseley JB, Bartolini F, Okada K, Wen Y, Gundersen GG, Goode BL (2007) Regulated binding of adenomatous polyposis coli protein to actin. J Biol Chem 282:12661–12668

    PubMed  CAS  Google Scholar 

  • Mulder B, Schell J, Emons AM (2004) How the geometrical model for plant cell wall formation enables the production of a random texture. Cellulose 11:395–401

    CAS  Google Scholar 

  • Murata T, Wada M (1991) Effects of centrifugation on preprophase-band formation in Adiantum protonemata. Planta 183:391–398

    Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in chilling sensitivity of plants. Nature 356:710–713

    CAS  Google Scholar 

  • Nemec B (1900) Über die Art der Wahrnehmung des Schwerkraftreizes bei den Pflanzen. Ber Dtsch Bot Ges 18:241–245

    Google Scholar 

  • Nick P (2008a) Control of cell axis. Plant Cell Monogr 11:3–46

    CAS  Google Scholar 

  • Nick P (2008b) Microtubules as sensors for abiotic stimuli. Plant Cell Monogr 11:175–203

    CAS  Google Scholar 

  • Nick P, Furuya M (1996) Buder revisited – cell and organ polarity during phototropism. Plant Cell Environ 19:1179–1187

    PubMed  CAS  Google Scholar 

  • Nick P, Schäfer E, Hertel R, Furuya M (1991) On the putative role of microtubules in gravitropism of maize coleoptiles. Plant Cell Physiol 32:873–880

    CAS  Google Scholar 

  • Nick P, Yatou O, Furuya M, Lambert AM (1994) Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC. Plant J 6:651–663

    CAS  Google Scholar 

  • Nick P, Godbolé R, Wang QY (1997) Probing rice gravitropism with cytoskeletal drugs and cytoskeletal mutants. Biol Bull 192:141–143

    PubMed  CAS  Google Scholar 

  • Nick P, Han M, An G (2009) Auxin stimulates its own transport by actin reorganization. Plant Physiol 151:155–167

    PubMed  CAS  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics. An engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    PubMed  CAS  Google Scholar 

  • Panteris E (2008) Cortical actin filaments at the division site of mitotic plant cells: a reconsideration of the ‘actin-depleted zone’. New Phytol 179:334–341

    PubMed  CAS  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    PubMed  CAS  Google Scholar 

  • Parthasarathy MV, Perdue TD, Witztum A, Alvernaz J (1985) Actin network as a normal component of the cytoskeleton in many vascular plant cells. Am J Bot 72:1318–1323

    Google Scholar 

  • Pickard BG (2008) “Second extrinsic organizational mechanism” for orienting cellulose: modeling a role for the plasmalemmal reticulum. Protoplasma 233:7–29

    PubMed  CAS  Google Scholar 

  • Pickard BG, Fujiki M (2005) Ca2+ pulsation in BY-2 cells and evidence for control of mechanosensory Ca2+-selective channels by the plasmalemmal reticulum. Funct Plant Biol 32:863–879

    CAS  Google Scholar 

  • Pihakaski-Maunsbach K, Puhakainen T (1995) Effect of cold exposure on cortical microtubules of rye (Secale cereale) as observed by immunocytochemistry. Physiol Plant 93:563–571

    CAS  Google Scholar 

  • Preston RD (1988) Cellulose-microfibril-orienting mechanisms in plant cell walls. Planta 174:67–74

    CAS  Google Scholar 

  • Preuss ML, Kovar DR, Lee YR, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–3955

    PubMed  CAS  Google Scholar 

  • Rawitscher F (1932) Der Geotropismus der Pflanzen. Fischer, Jena

    Google Scholar 

  • Richardson D, Simmons M, Reddy A (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7:18

    PubMed  Google Scholar 

  • Rikin A, Richmond AE (1976) Amelioration of chilling injuries in cucumber seedlings by abscisic acid. Physiol Plant 38:95–97

    CAS  Google Scholar 

  • Rikin A, Waldman M, Richmond AE, Dovrat A (1975) Hormonal regulation of morphogenesis and cold resistance. I. Modifications by abscisic acid and gibberellic acid in alfalfa (Medicago sativa L.) seedlings. J Exp Bot 26:175–183

    CAS  Google Scholar 

  • Rikin A, Atsmon D, Gitler C (1980) Chilling injury in cotton (Gossypium hirsutum L.): effects of antimicrotubular drugs. Plant Cell Physiol 21:829–837

    CAS  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1185

    PubMed  CAS  Google Scholar 

  • Robby T (1996) A new architecture. Yale Academic Press, New Haven

    Google Scholar 

  • Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609

    PubMed  CAS  Google Scholar 

  • Sachs J (1880) Stoff und Form der Pflanzenorgane. Arb Bot Inst Würzburg 2:469–479

    Google Scholar 

  • Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132:1–77

    PubMed  CAS  Google Scholar 

  • Sainsbury F, Collings DA, Mackun K, Gardiner J, Harper JDI, Marc J (2008) Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment. Plant J 56:116–131

    PubMed  CAS  Google Scholar 

  • Sakiyama M, Shibaoka H (1990) Effects of abscisic acid on the orientation and cold stability of cortical microtubules in epicotyl cells of the dwarf pea. Protoplasma 157:165–171

    CAS  Google Scholar 

  • Samuels AL, Giddings TH, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells – a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    PubMed  CAS  Google Scholar 

  • Sandblad L, Busch KE, Tittmann P, Gross H, Brunner D, Hoenger A (2006) The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell 127:1415–1424

    PubMed  CAS  Google Scholar 

  • Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27:1–12

    PubMed  CAS  Google Scholar 

  • Sano T, Higaki T, Oda Y, Hayashi T, Hasezawa S (2005) Appearance of actin microfilament ‘twin peaks’ in mitosis and their function in cell plate formation, as imaged in tobacco BY-2 cells expressing GFP-fimbrin. Plant J 44:595–605

    PubMed  CAS  Google Scholar 

  • Sato Y, Kadota A, Wada M (1999) Mechanically Induced Avoidance Response of Chloroplasts in Fern Protonemal Cells. Plant Physiol 121:37–44

    PubMed  CAS  Google Scholar 

  • Schmelzer E (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411–415

    PubMed  CAS  Google Scholar 

  • Schmit AC, Nick P (2008) Microtubules and the evolution of mitosis. Plant Cell Monogr 11: 1500 233–266

    Google Scholar 

  • Schwuchow J, Sack FD, Hartmann E (1990) Microtubule disruption in gravitropic protonemata of the moss Ceratodon. Protoplasma 159:60–69

    PubMed  CAS  Google Scholar 

  • Seagull R (1990) The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers. Protoplasma 159:44–59

    CAS  Google Scholar 

  • Sedbrook JC, Kaloriti D (2008) Microtubules, MAPs and plant directional cell expansion. Trends Plant Sci 13:303–310

    PubMed  CAS  Google Scholar 

  • Shibaoka T (1966) Action potentials in plant organs. Symp Soc Exp Biol 20:165–184

    Google Scholar 

  • Sievers A, Schröter K (1971) Versuch einer Kausalanalyse der geotropischen Reaktionskette im Chara-Rhizoid. Planta 96:339–353

    Google Scholar 

  • Sonobe S, Shibaoka H (1989) Cortical fine actin filaments in higher plant cells visualized by rhodamine-phalloidin after pretreatment with m-maleimidobenzoyl-N-hydrosuccinimide ester. Protoplasma 148:80–86

    Google Scholar 

  • Tabony J, Glade N, Papaseit C, Demongeot J (2004) Microtubule self-organization as an example of the development of order in living systems. J Biol Phys Chem 4:50–63

    CAS  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864–3876

    PubMed  CAS  Google Scholar 

  • Tamura K, Nakatani K, Mitsui H, Ohashi Y, Takahashi H (1999) Characterization of katD, a kinesin-like protein gene specifically expressed in floral tissues of Arabidopsis thaliana. Gene 230:23–32

    PubMed  CAS  Google Scholar 

  • Taylor DP, Leopold AC (1992) Offset of gravitropism in maize roots by low temperature. ASGSB Bull 6:75

    Google Scholar 

  • Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476

    PubMed  Google Scholar 

  • Thimann KV, Reese K, Nachmikas VT (1992) Actin and the elongation of plant cells. Protoplasma 171:151–166

    Google Scholar 

  • Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193–196

    PubMed  CAS  Google Scholar 

  • Thomas DDS, Dunn DM, Seagull RW (1977) Rapid cytoplasmic responses of oat coleoptiles to cytochalasin B, auxin, and colchicine. Can J Bot 55:1797–1800

    CAS  Google Scholar 

  • Thompson DW (1959) On growth and form. Cambridge University Press, Cambridge, pp 465–644

    Google Scholar 

  • Tirnauer JS, Bierer BE (2000) EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J Cell Biol 149:761–766

    PubMed  CAS  Google Scholar 

  • Toriyama H, Jaffe MJ (1972) Migration of calcium and its role in the regulation of seismonasty in the motor cell of Mimosa pudica D. Plant Physiol 49:72–81

    PubMed  CAS  Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375:676–677

    CAS  Google Scholar 

  • Tsvetkov AS, Samsonov A, Akhmanova A, Galjart N, Popov SV (2007) Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell Motil Cytoskelet 64:519–530

    CAS  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B 237:37–72

    Google Scholar 

  • Vantard M, Leviliiers N, Hill AM, Adoutte A, Lambert AM (1990) Incorporation of Paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubule assembly. Proc Natl Acad Sci USA 87:8825–8829

    PubMed  CAS  Google Scholar 

  • Vitha S, Froehlich JE, Koksharova O, Pyke KA, van Erp H, Osteryoung KW (2003) ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell 15:1918–1933

    PubMed  CAS  Google Scholar 

  • Vöchting H (1878) Über Organbildung im Pflanzenreich. Cohen, Bonn

    Google Scholar 

  • Vogelmann TC, Bassel AR, Miller JH (1981) Effects of microtubule-inhibitors on nuclear migration and rhizoid formation in germinating fern spores (Onoclea sensibilis). Protoplasma 109:295–316

    CAS  Google Scholar 

  • Voigt B, Timmers ACJ, Šamaj J, Müller J, Baluška F, Menzel D (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84:595–608

    PubMed  CAS  Google Scholar 

  • Walker LM, Sack FD (1990) Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus. Planta 181:71–77

    PubMed  CAS  Google Scholar 

  • Waller F, Nick P (1997) Response of actin microfilaments during phytochrome-controlled growth of maize seedlings. Protoplasma 200:154–162

    CAS  Google Scholar 

  • Waller F, Riemann M, Nick P (2002) A role for actin-driven secretion in auxin-induced growth. Protoplasma 219:72–81

    PubMed  CAS  Google Scholar 

  • Wang QY, Nick P (1998) The auxin response of actin is altered in the rice mutant Yin-Yang. Protoplasma 204:22–33

    PubMed  CAS  Google Scholar 

  • Wang QY, Nick P (2001) Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant Cell Physiol 42:999–1005

    PubMed  CAS  Google Scholar 

  • Wang YS, Motes CM, Mohamalawari DR, Blancaflor EB (2004) Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil Cytoskelet 59:79–93

    CAS  Google Scholar 

  • Wang X, Zhua L, Liu B, Wang C, Jin L, Zhao Q, Yuan M (2007) Arabidopsis microtubule-associated protein18 functions in directional cell growth by destabilizing cortical microtubules. Plant Cell 19:877–889

    PubMed  CAS  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    PubMed  CAS  Google Scholar 

  • Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722

    PubMed  CAS  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    PubMed  CAS  Google Scholar 

  • Wiesler B, Wang QY, Nick P (2002) The stability of cortical microtubules depends on their orientation. Plant J 32:1023–1032

    PubMed  CAS  Google Scholar 

  • Wymer C, Wymer SA, Cosgrove DJ, Cyr RJ (1996) Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430

    PubMed  CAS  Google Scholar 

  • Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G (2009) A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J 421:171–180

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Hiraoka Y (2003) Cytoplasmic dynein in fungi: insights from nuclear migration. J Cell Sci 116:4501–4512

    PubMed  CAS  Google Scholar 

  • Zandomeni K, Schopfer P (1994) Mechanosensory microtubule reorientation in the epidermis of maize coleoptiles subjected to bending stress. Protoplasma 182:96–101

    PubMed  CAS  Google Scholar 

  • Zhou J, Wang B, Li Y, Wang Y, Zhu L (2007) Responses of Chrysanthemum cells to mechanical stimulation require intact microtubules and plasma membrane-cell wall adhesion. J Plant Growth Regul 26:55–68

    Google Scholar 

  • Zimmermann W (1965) Die Telomtheorie. Fischer, Stuttgart

    Google Scholar 

  • Zimmermann S, Nürnberger T, Frachisse JM, Wirtz W, Guern J, Hedrich R, Scheel D (1997) Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proc Natl Acad Sci USA 94:2751–2755

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nick, P. (2011). Mechanics of the Cytoskeleton. In: Wojtaszek, P. (eds) Mechanical Integration of Plant Cells and Plants. Signaling and Communication in Plants, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19091-9_3

Download citation

Publish with us

Policies and ethics