Skip to main content

Plants as Mechano-Osmotic Transducers

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 9))

Abstract

Supportive function and expansion of a soft tissue are considered from the energetic perspective. The minimum of the potential energy in a cell determines the cell shape. The minimum of the potential energy in a cylindrical organ composed of turgid tissues, which differ in their elasticity moduli, predicts the occurrence of tissue stresses in the organ. The concept of turgor-driven cell wall extension is reexamined on the assumptions that (1) during stress relaxation the osmotic energy is transformed into strain energy of newly formed cell wall layers, and (2) only the outer cell wall layer undergoes the stress relaxation. This leads to an equation for a relative extension rate different from the rheological equation but also including a threshold turgor pressure. The cases of cell wall expansion that cannot be driven by turgor pressure (formation of intercalary gas spaces, expansion of convoluted anticlinal walls in leaf epidermis, expansion of cell wall invaginations in Pinus mesophyll) are described. A hypothesis is presented that in such cases the wall extension is driven by an increased swelling of the inner layer of the cell wall.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Buckling is a reversible deformation due to pure compression resulting in bending when a threshold compressive stress is surpassed.

References

  • Bergfeld R, Speth V, Schopfer P (1987) Reorientation of microfibrils and microtubules at the outer epidermal wall of maize coleoptiles during auxin-mediated growth. Bot Acta 101:31–41

    Google Scholar 

  • Beusmans JMH, Silk WK (1988) Mechanical properties within the growth zone of corn roots investigated by bending experiments: II. Distribution of modulus and compliance in bending. Am J Bot 75:996–1002

    Article  Google Scholar 

  • Boyer JS (2001) Growth-induced water potentials originate from wall yielding during growth. J Exp Bot 52:1483–1488

    Article  PubMed  CAS  Google Scholar 

  • Burgert I, Eder M, Gierlinger N, Fratzl P (2007) Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. Planta 226:981–987

    Article  PubMed  CAS  Google Scholar 

  • Burström H (1959) Growth and formation of intercellularies in root meristems. Physiol Plant 12:371–385

    Article  Google Scholar 

  • Campbell R (1972) Electron microscopy of the development of needles of Pinus nigra var. maritima. Ann Bot 36:711–720

    Google Scholar 

  • Correns C (1892) Zur Kenntnis der inneren Struktur der vegetabilischen Zellmembranen. Jahrb f wiss Bot 23:254–274

    Google Scholar 

  • Cosgrove DJ (1988) Mechanism of rapid suppression of cell expansion in cucumber hypocotyl after blue-light irradiation. Planta 176:109–116

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    Article  PubMed  CAS  Google Scholar 

  • Dorrington KL (1980) The theory of viscoelasticity in biomaterials. In: Vincent I et al. (eds) The mechanical properties of biological materials. Press Syndicate of the University of Cambridge, Cambridge, pp 289–314

    Google Scholar 

  • Dumais J (2007) Can mechanics control pattern formation in plants? Curr Opin Plant Biol 10:58–62

    Article  PubMed  Google Scholar 

  • Dumais J, Shaw SL, Steele CR, Long SR, Ray PM (2006) An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int J Dev Biol 50:209–222

    Article  PubMed  Google Scholar 

  • Edelmann HG (1995) Wall extensibility during hypocotyl growth; a hypothesis to explain elastic induced wall loosening. Physiol Plant 95:296–303

    Article  CAS  Google Scholar 

  • Erickson RO (1986) Symplastic growth and symplasmic transport. Plant Physiol 82:1153

    Article  PubMed  CAS  Google Scholar 

  • Finney EE, Hall CW, Mase GE (1964) Theory of linear viscoelasticity applied to potato. J Agric Eng Res 9:307–312

    Google Scholar 

  • Forterre Y, Skotheim JM, Dumais J, Mahedevan L (2005) How the Venus flytrap snaps. Nature 433:421–425

    Article  PubMed  CAS  Google Scholar 

  • Galatis B, Apostolakos P (2004) The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytol 161:613–839

    Article  Google Scholar 

  • Green PB, Erickson RO, Buggy J (1971) Metabolic and physical control of cell elongation rate. In vivo studies in Nitella. Plant Physiol 47:423–430

    Article  PubMed  CAS  Google Scholar 

  • Harris WM (1971) Ultrastructural observations on the mesophyll cells of pine leaves. Can J Bot 49:1107–1109

    Article  Google Scholar 

  • Hejnowicz Z (1997) Graviresponses in herbs and trees; a major role for the redistribution of tissue and growth stresses. Planta 203:S135–S146

    Article  Google Scholar 

  • Hejnowicz Z, Barthlott W (2005) Structural and mechanical peculiarities of the petioles of giant leaves of Amorphophallus (Araceae). Am J Bot 92:391–403

    Article  PubMed  Google Scholar 

  • Hejnowicz Z, Borowska-Wykręt D (2005) Buckling of the inner cell wall layers after manipulations to reduce tensile stress: observations and interpretations for stress transmission. Planta 220:465–473

    Article  PubMed  CAS  Google Scholar 

  • Hejnowicz Z, Sievers A (1995a) Tissue stresses in organs of herbaceous plants I. Poisson ratios and their role in determination of the stresses. J Exp Bot 46:1035–1044

    Article  CAS  Google Scholar 

  • Hejnowicz Z, Sievers A (1995b) Tissue stresses in organs of herbaceous plants II. Determination in three dimensions in the hypocotyl of sunflower. J Exp Bot 46:1045–1053

    Article  CAS  Google Scholar 

  • Hejnowicz Z, Sievers A (1996) Tissue stresses in organs of herbaceous plants III. Elastic properties of the tissues of sunflower hypocotyl and origin of tissue stresses. J Exp Bot 47:519–528

    Article  CAS  Google Scholar 

  • Heyn ANJ (1933) Further investigations on the mechanism of cell elongation and the properties of the cell wall in connection with elongation. I. The load extension relationship. Protoplasma 19:78–96

    Article  Google Scholar 

  • Hiller GH (1872) Untersuchungen über die Epidermis der Blüthenblätter. Jahrb f wiss Bot 15:411–452

    Google Scholar 

  • Hohl M, Schopfer P (1992a) Growth at reduced turgor; irreversible and reversible cell-wall extension of maize coleoptiles and its implications for the theory of cell growth. Planta 187:209–217

    CAS  Google Scholar 

  • Hohl M, Schopfer P (1992b) Physical extensibility of maize coleoptile cell walls: apparent plastic extensibility is due to elastic hysteresis. Planta 187:498–504

    Google Scholar 

  • Hoss S, Wernicke W (1995) Microtubule and the establishment of apparent cell wall invaginations in mesophyll cells of Pinus silvestris L. J Plant Physiol 147:474–476

    CAS  Google Scholar 

  • Huyghe JM, Bovendeerd PHM (2004) Swelling media: concepts and applications. In: Loret B, Huyghe JM (eds) Chemomechanical couplings in porous media – Geomechanics and biomechanics. Springer, Heidelberg, pp 57–124

    Google Scholar 

  • Jaffe MJ, Leopold AC (1984) Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose. Planta 161:20–26

    Article  PubMed  CAS  Google Scholar 

  • Kenealy WR, Jeffries TW (2003) Enzyme processes for pulp and paper: a review of recent developments. In: Goodell B et al (eds) Wood deterioration and preservation. Oxford University Press, Oxford, pp 210–239

    Chapter  Google Scholar 

  • Kutschera U (1989) Tissue stresses in growing plant organs. Physiol Plant 77:157–163

    Article  Google Scholar 

  • Kutschera U (1994) The current status of the acid-growth hypothesis. New Phytol 126:349–369

    Article  Google Scholar 

  • Kutschera U, Köhler K (1992) Turgor and longitudinal tissue pressure in hypocotyls of Helianthus annuus L. J Exp Bot 43:1577–1581

    Article  Google Scholar 

  • Kutschera U, Bergfeld R, Schopfer P (1987) Cooperation of epidermis and inner tissues in auxin-mediated growth in maize coleoptiles. Planta 170:168–180

    Article  CAS  Google Scholar 

  • Lockhart JA (1965) An analysis of irreversible plant cell growth. J Theor Biol 8:264–375

    Article  PubMed  CAS  Google Scholar 

  • Lüthen H, Bigdon M, Böttger M (1990) Reexamination of the acid growth theory of auxin action. Plant Physiol 93:931–939

    Article  PubMed  Google Scholar 

  • Maltby D, Carpita NC, Montezinos D, Kulow C, Delmer DP (1979) β-1,3-Glucan in developing cotton fibers. Plant Physiol 63:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Marshall JG, Dumbroff EB (1999) Turgor regulation via cell wall adjustment in white spruce. Plant Physiol 119:313–319

    Article  PubMed  CAS  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics. An engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  • Nobel PS (1974) Introduction to biophysical plant physiology. WH Freeman, San Francisco

    Google Scholar 

  • Nonami H, Wu YJ, Boyer JS (1997) Decreased growth-induced water potentials; a primary cause of growth inhibition at low water potentials. Plant Physiol 114:501–509

    PubMed  CAS  Google Scholar 

  • Panteris E, Apostokalos P, Galatis B (1993) Microtubules and morphogenesis in ordinary epidermal cells of Vigna sinensis leaves. Protoplasma 174:91–100

    Article  Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1994) Sinuous ordinary epidermal cells; behind several patterns of waviness, a common morphogenetic mechanism. New Phytol 127:771–780

    Article  Google Scholar 

  • Parre E, Geitmann A (2005) More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 137:274–286

    Article  PubMed  CAS  Google Scholar 

  • Passioura JB, Boyer JS (2003) Tissue stresses and resistance to water flow conspire to uncouple the water potential of the epidermis from that of the xylem in elongating plant stems. Funct Plant Biol 30:325–334

    Article  Google Scholar 

  • Peters WS, Tomos AD (1996) The history of tissue tension. Ann Bot 77:657–665

    Article  PubMed  CAS  Google Scholar 

  • Peters WS, Farm MS, Kopf AJ (2001) Does growth correlate with turgor-induced elastic strain in stems? A re-evaluation of de Vries’ classical experiments. Plant Physiol 125:2173–2179

    Article  PubMed  CAS  Google Scholar 

  • Proseus TE, Boyer JS (2005) Turgor pressure moves polysaccharides into growing cell walls of Chara corallina. Ann Bot 95:967–979

    Article  PubMed  Google Scholar 

  • Proseus TE, Boyer JS (2006a) Identifying cytoplasmic input to the cell wall of growing Chara corallina. J Exp Bot 57:3231–3242

    Article  PubMed  CAS  Google Scholar 

  • Proseus TE, Boyer JS (2006b) Periplasm turgor pressure controls wall deposition and assembly in growing Chara corallina cells. Ann Bot 98:93–105

    Article  PubMed  CAS  Google Scholar 

  • Proseus TE, Boyer JS (2007) Tension required for pectate chemistry to control growth in Chara corallina. J Exp Bot 58:4283–4292

    Article  PubMed  CAS  Google Scholar 

  • Proseus TE, Ortega JKF, Boyer JS (1999) Separating growth from elastic deformation during cell enlargement. Plant Physiol 119:775–784

    Article  PubMed  CAS  Google Scholar 

  • Rayle DL, Cleland RE (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–253

    Article  PubMed  CAS  Google Scholar 

  • Refrégier G, Pelletier S, Jaillard D, Höfte H (2004) Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in Arabidopsis. Plant Physiol 135:959–968

    Article  PubMed  Google Scholar 

  • Roland JC (1978) Cell wall differentiation and stages involved with intercellular gas space opening. J Cell Sci 32:325–336

    PubMed  CAS  Google Scholar 

  • Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425

    Article  PubMed  Google Scholar 

  • Singh PP, Cushman JN, Bennethum LS, Maier DE (2003) Thermodynamics of swelling biopolymeric systems. Transport Porous Media 53:1–24

    Article  CAS  Google Scholar 

  • Spatz H-Chr, Köhler L, Speck Th (1998) Biomechanics and functional anatomy of hollow-stemmed sphenopsids. I. Equisetum giganteum (Equisetaceae). Am J Bot 85:305–314

    Article  Google Scholar 

  • Speck Th, Speck O, Emanns A, H-Chr S (1998) Biomechanics and functional anatomy of hollow-stemmed sphenopsids. II. Equisetum hyemale. Bot Acta 111:366–376

    Google Scholar 

  • Strasburger E (1889) Ueber das Wachsthum vegetabilischer Zellhäute. Verlag von Gustav Fischer, Jena

    Google Scholar 

  • Taiz I (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35:585–657

    Article  CAS  Google Scholar 

  • Verbelen JP, Vissenberg K, Le J (2001) Cell expansion in the epidermis: microtubules, cellulose orientation and wall loosening enzymes. J Plant Physiol 158:537–543

    Article  CAS  Google Scholar 

  • Wardrop AB, Cronshaw J (1958) Changes in cell wall organization resulting from surface growth in parenchyma of oat coleoptiles. Aust J Bot 6:89–95

    Article  Google Scholar 

  • Wei C, Lintilhac PM (2003) Loss of stability – a new model for stress relaxation in plant cell walls. J Theor Biol 224:305–312

    Article  PubMed  CAS  Google Scholar 

  • Wei C, Lintilhac PM (2007) Loss of stability: a new look at the physics of cell wall behavior during plant cell growth. Plant Physiol 145:763–772

    Article  PubMed  CAS  Google Scholar 

  • Weston GD, Cass DD (1973) Observations on the development of the paraveinal mesophyll of soybean leaves. Bot Gaz 134:332–335

    Article  Google Scholar 

  • Zhu GL, Boyer JS (1992) Enlargement in Chara studied with a turgor clamp. Plant Physiol 100:2071–2080

    Article  PubMed  CAS  Google Scholar 

Download references

Dedication and Acknowledgments

The author dedicates this chapter to Andreas Sievers.

The author thanks Dorota Kwiatkowska for helpful discussion and comments, and Agata Burian and Anna Staroń for providing copies of literature issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt Hejnowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hejnowicz, Z. (2011). Plants as Mechano-Osmotic Transducers. In: Wojtaszek, P. (eds) Mechanical Integration of Plant Cells and Plants. Signaling and Communication in Plants, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19091-9_10

Download citation

Publish with us

Policies and ethics