Skip to main content

Established and Novel Cdk/Cyclin Complexes Regulating the Cell Cycle and Development

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS))

Abstract

The identification of new members in the Cdk and cyclin families, functions for many of which are still emerging, has added new facets to the cell cycle regulatory network. With roles extending beyond the classical regulation of cell cycle progression, these new players are involved in diverse processes such as transcription, neuronal function, and ion transport. Members closely related to Cdks and cyclins such as the Speedy/RINGO proteins offer fresh insights and hope for filling in the missing gaps in our understanding of cell division. This chapter will present a broad outlook on the cell cycle and its key regulators with special emphasis on the less-studied members and their emerging roles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akbari M, Otterlei M, Pena-Diaz J, Aas PA, Kavli B, Liabakk NB, Hagen L, Imai K, Durandy A, Slupphaug G, Krokan HE (2004) Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Nucleic Acids Res 32:5486–5498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akoulitchev S, Chuikov S, Reinberg D (2000) TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407:102–106

    CAS  PubMed  Google Scholar 

  • Althoff F, Viktorinova I, Kastl J, Lehner CF (2009) Drosophila Cyclin J is a mitotically stable Cdk1 partner without essential functions. Dev Biol 333:263–272

    CAS  PubMed  Google Scholar 

  • Andrews B, Measday V (1998) The cyclin family of budding yeast: abundant use of a good idea. Trends Genet 14:66–72

    CAS  PubMed  Google Scholar 

  • Arellano M, Moreno S (1997) Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol 29:559–573

    CAS  PubMed  Google Scholar 

  • Bai C, Richman R, Elledge SJ (1994) Human cyclin F. EMBO J 13:6087–6098

    CAS  PubMed  Google Scholar 

  • Barnes EA, Porter LA, Lenormand JL, Dellinger RW, Donoghue DJ (2003) Human Spy1 promotes survival of mammalian cells following DNA damage. Cancer Res 63:3701–3707

    CAS  PubMed  Google Scholar 

  • Berke JD, Sgambato V, Zhu PP, Lavoie B, Vincent M, Krause M, Hyman SE (2001) Dopamine and glutamate induce distinct striatal splice forms of Ania-6, an RNA polymerase II-associated cyclin. Neuron 32:277–287

    CAS  PubMed  Google Scholar 

  • Berro R, Pedati C, Kehn-Hall K, Wu W, Klase Z, Even Y, Geneviere AM, Ammosova T, Nekhai S, Kashanchi F (2008) CDK13, a new potential human immunodeficiency virus type 1 inhibitory factor regulating viral mRNA splicing. J Virol 82:7155–7166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P (2003) Cdk2 knockout mice are viable. Curr Biol 13:1775–1785

    CAS  PubMed  Google Scholar 

  • Berthet C, Klarmann KD, Hilton MB, Suh HC, Keller JR, Kiyokawa H, Kaldis P (2006) Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell 10:563–573

    CAS  PubMed  Google Scholar 

  • Besset V, Rhee K, Wolgemuth DJ (1998) The identification and characterization of expression of Pftaire-1, a novel Cdk family member, suggest its function in the mouse testis and nervous system. Mol Reprod Dev 50:18–29

    CAS  PubMed  Google Scholar 

  • Bockstaele L, Coulonval K, Kooken H, Paternot S, Roger PP (2006) Regulation of CDK4. Cell Div 1:25

    PubMed Central  PubMed  Google Scholar 

  • Bockstaele L, Bisteau X, Paternot S, Roger PP (2009) Differential regulation of cyclin-dependent kinase 4 (CDK4) and CDK6, evidence that CDK4 might not be activated by CDK7, and design of a CDK6 activating mutation. Mol Cell Biol 29:4188–4200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boucher MJ, Duchesne C, Laine J, Morisset J, Rivard N (2001) cAMP protection of pancreatic cancer cells against apoptosis induced by ERK inhibition. Biochem Biophys Res Commun 285:207–216

    CAS  PubMed  Google Scholar 

  • Brandeis M, Rosewell I, Carrington M, Crompton T, Jacobs MA, Kirk J, Gannon J, Hunt T (1998) Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci U S A 95:4344–4349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braun K, Holzl G, Soucek T, Geisen C, Moroy T, Hengstschlager M (1998) Investigation of the cell cycle regulation of cdk3-associated kinase activity and the role of cdk3 in proliferation and transformation. Oncogene 17:2259–2269

    CAS  PubMed  Google Scholar 

  • Brinkkoetter PT, Olivier P, Wu JS, Henderson S, Krofft RD, Pippin JW, Hockenbery D, Roberts JM, Shankland SJ (2009) Cyclin I activates Cdk5 and regulates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells. J Clin Invest 119:3089–3101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caligiuri M, Becker F, Murthi K, Kaplan F, Dedier S, Kaufmann C, Machl A, Zybarth G, Richard J, Bockovich N et al (2005) A proteome-wide CDK/CRK-specific kinase inhibitor promotes tumor cell death in the absence of cell cycle progression. Chem Biol 12:1103–1115

    CAS  PubMed  Google Scholar 

  • Chen HH, Wang YC, Fann MJ (2006) Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol 26:2736–2745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen HH, Wong YH, Geneviere AM, Fann MJ (2007) CDK13/CDC2L5 interacts with L-type cyclins and regulates alternative splicing. Biochem Biophys Res Commun 354:735–740

    CAS  PubMed  Google Scholar 

  • Cheng A, Xiong W, Ferrell JE Jr, Solomon MJ (2005) Identification and comparative analysis of multiple mammalian Speedy/Ringo proteins. Cell Cycle 4:155–165

    CAS  PubMed  Google Scholar 

  • Ciemerych MA, Kenney AM, Sicinska E, Kalaszczynska I, Bronson RT, Rowitch DH, Gardner H, Sicinski P (2002) Development of mice expressing a single D-type cyclin. Genes Dev 16:3277–3289

    CAS  PubMed  Google Scholar 

  • Cole AR (2009) PCTK proteins: the forgotten brain kinases? Neurosignals 17:288–297

    CAS  PubMed  Google Scholar 

  • Cross FR (1988) DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol Cell Biol 8:4675–4684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz JC, Tsai LH (2004) A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14:390–394

    CAS  PubMed  Google Scholar 

  • D’Angiolella V, Donato V, Vijayakumar S, Saraf A, Florens L, Washburn MP, Dynlacht B, Pagano M (2010) SCFCyclin F controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 466:138–142

    PubMed Central  PubMed  Google Scholar 

  • Davidson G, Shen J, Huang YL, Su Y, Karaulanov E, Bartscherer K, Hassler C, Stannek P, Boutros M, Niehrs C (2009) Cell cycle control of wnt receptor activation. Dev Cell 17:788–799

    CAS  PubMed  Google Scholar 

  • Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759

    CAS  PubMed  Google Scholar 

  • Dhavan R, Greer PL, Morabito MA, Orlando LR, Tsai LH (2002) The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner. J Neurosci 22:7879–7891

    CAS  PubMed  Google Scholar 

  • Dickinson LA, Edgar AJ, Ehley J, Gottesfeld JM (2002) Cyclin L is an RS domain protein involved in pre-mRNA splicing. J Biol Chem 277:25465–25473

    CAS  PubMed  Google Scholar 

  • Dinarina A, Perez LH, Davila A, Schwab M, Hunt T, Nebreda AR (2005) Characterization of a new family of cyclin-dependent kinase activators. Biochem J 386:349–355

    CAS  PubMed  Google Scholar 

  • Edelheit S, Meiri N (2004) Cyclin S: a new member of the cyclin family plays a role in long-term memory. Eur J Neurosci 19:365–375

    PubMed  Google Scholar 

  • Edwards MC, Wong C, Elledge SJ (1998) Human cyclin K, a novel RNA polymerase II-associated cyclin possessing both carboxy-terminal domain kinase and Cdk-activating kinase activity. Mol Cell Biol 18:4291–4300

    Google Scholar 

  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33: 389–396

    CAS  PubMed  Google Scholar 

  • Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM (1993) Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73:487–497

    CAS  PubMed  Google Scholar 

  • Faast R, White J, Cartwright P, Crocker L, Sarcevic B, Dalton S (2004) Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16INK4a. Oncogene 23:491–502

    CAS  PubMed  Google Scholar 

  • Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C (1995) Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 9:2364–2372

    CAS  PubMed  Google Scholar 

  • Ferby I, Blazquez M, Palmer A, Eritja R, Nebreda AR (1999) A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes. Genes Dev 13:2177–2189

    CAS  PubMed  Google Scholar 

  • Fesquet D, Labbe JC, Derancourt J, Capony JP, Galas S, Girard F, Lorca T, Shuttleworth J, Doree M, Cavadore JC (1993) The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J 12:3111–3121

    CAS  PubMed  Google Scholar 

  • Fisher RP (2005) Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 118:5171–5180

    CAS  PubMed  Google Scholar 

  • Fu TJ, Peng J, Lee G, Price DH, Flores O (1999) Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. J Biol Chem 274:34527–34530

    CAS  PubMed  Google Scholar 

  • Fu Z, Larson KA, Chitta RK, Parker SA, Turk BE, Lawrence MW, Kaldis P, Galaktionov K, Cohn SM, Shabanowitz J et al (2006) Identification of yin-yang regulators and a phosphorylation consensus for male germ cell-associated kinase (MAK)-related kinase. Mol Cell Biol 26:8639–8654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fung TK, Siu WY, Yam CH, Lau A, Poon RY (2002) Cyclin F is degraded during G2-M by mechanisms fundamentally different from other cyclins. J Biol Chem 277:35140–35149

    CAS  PubMed  Google Scholar 

  • Garriga J, Grana X (2004) Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene 337:15–23

    CAS  PubMed  Google Scholar 

  • Gastwirt RF, McAndrew CW, Donoghue DJ (2007) Speedy/RINGO regulation of CDKs in cell cycle, checkpoint activation and apoptosis. Cell Cycle 6:1188–1193

    CAS  PubMed  Google Scholar 

  • Geng Y, Eaton EN, Picon M, Roberts JM, Lundberg AS, Gifford A, Sardet C, Weinberg RA (1996) Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene 12:1173–1180

    CAS  PubMed  Google Scholar 

  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P (2003) Cyclin E ablation in the mouse. Cell 114:431–443

    CAS  PubMed  Google Scholar 

  • Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE, Sicinski P (2007) Kinase-independent function of cyclin E. Mol Cell 25:127–139

    CAS  PubMed  Google Scholar 

  • Glotzer M (1995) Cell cycle. The only way out of mitosis. Curr Biol 5:970–972

    CAS  PubMed  Google Scholar 

  • Golipour A, Myers D, Seagroves T, Murphy D, Evan GI, Donoghue DJ, Moorehead RA, Porter LA (2008) The Spy1/RINGO family represents a novel mechanism regulating mammary growth and tumorigenesis. Cancer Res 68:3591–3600

    CAS  PubMed  Google Scholar 

  • Graeser R, Gannon J, Poon RY, Dubois T, Aitken A, Hunt T (2002) Regulation of the CDK-related protein kinase PCTAIRE-1 and its possible role in neurite outgrowth in Neuro-2A cells. J Cell Sci 115:3479–3490

    CAS  PubMed  Google Scholar 

  • Grana X, Claudio PP, De Luca A, Sang N, Giordano A (1994) PISSLRE, a human novel CDC2-related protein kinase. Oncogene 9:2097–2103

    CAS  PubMed  Google Scholar 

  • Gudas JM, Payton M, Thukral S, Chen E, Bass M, Robinson MO, Coats S (1999) Cyclin E2, a novel G1 cyclin that binds Cdk2 and is aberrantly expressed in human cancers. Mol Cell Biol 19:612–622

    CAS  PubMed  Google Scholar 

  • Guo D, Ling J, Wang MH, She JX, Gu J, Wang CY (2005) Physical interaction and functional coupling between ACDP4 and the intracellular ion chaperone COX11, an implication of the role of ACDP4 in essential metal ion transport and homeostasis. Mol Pain 1:15

    PubMed Central  PubMed  Google Scholar 

  • Gutierrez GJ, Vogtlin A, Castro A, Ferby I, Salvagiotto G, Ronai Z, Lorca T, Nebreda AR (2006) Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation. Nat Cell Biol 8:1084–1094

    CAS  PubMed  Google Scholar 

  • Hagen L, Kavli B, Sousa MM, Torseth K, Liabakk NB, Sundheim O, Pena-Diaz J, Otterlei M, Horning O, Jensen ON et al (2008) Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO J 27:51–61

    CAS  PubMed  Google Scholar 

  • Hartwell L (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71:543–546

    CAS  PubMed  Google Scholar 

  • Hershko A (1999) Mechanisms and regulation of the degradation of cyclin B. Philos Trans R Soc Lond B Biol Sci 354:1575–1576

    Google Scholar 

  • Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70: 993–1006

    CAS  PubMed  Google Scholar 

  • Hirose T, Tamaru T, Okumura N, Nagai K, Okada M (1997) PCTAIRE 2, a Cdc2-related serine/threonine kinase, is predominantly expressed in terminally differentiated neurons. Eur J Biochem 249:481–488

    CAS  PubMed  Google Scholar 

  • Horne MC, Goolsby GL, Donaldson KL, Tran D, Neubauer M, Wahl AF (1996) Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression. J Biol Chem 271:6050–6061

    CAS  PubMed  Google Scholar 

  • Hu D, Mayeda A, Trembley JH, Lahti JM, Kidd VJ (2003) CDK11 complexes promote pre-mRNA splicing. J Biol Chem 278:8623–8629

    CAS  PubMed  Google Scholar 

  • Hu D, Valentine M, Kidd VJ, Lahti JM (2007) CDK11(p58) is required for the maintenance of sister chromatid cohesion. J Cell Sci 120:2424–2434

    CAS  PubMed  Google Scholar 

  • Huard JM, Forster CC, Carter ML, Sicinski P, Ross ME (1999) Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development 126:1927–1935

    CAS  PubMed  Google Scholar 

  • Iorns E, Martens-de Kemp SR, Lord CJ, Ashworth A (2009) CRK7 modifies the MAPK pathway and influences the response to endocrine therapy. Carcinogenesis 30:1696–1701

    CAS  PubMed  Google Scholar 

  • Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD (2000) The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10:429–439

    CAS  PubMed  Google Scholar 

  • Jiang M, Gao Y, Yang T, Zhu X, Chen J (2009) Cyclin Y, a novel membrane-associated cyclin, interacts with PFTK1. FEBS Lett 583:2171–2178

    CAS  PubMed  Google Scholar 

  • Johnson DG, Schneider-Broussard R (1998) Role of E2F in cell cycle control and cancer. Front Biosci 3:d447–d448

    CAS  PubMed  Google Scholar 

  • Kalaszczynska I, Geng Y, Iino T, Mizuno S, Choi Y, Kondratiuk I, Silver DP, Wolgemuth DJ, Akashi K, Sicinski P (2009) Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell 138:352–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaldis P (1999) The cdk-activating kinase (CAK): from yeast to mammals. Cell Mol Life Sci 55:284–296

    CAS  PubMed  Google Scholar 

  • Kaldis P, Pagano M (2009) Wnt signaling in mitosis. Dev Cell 17:749–750

    CAS  PubMed  Google Scholar 

  • Kaldis P, Solomon MJ (2000) Analysis of CAK activities from human cells. Eur J Biochem 267:4213–4221

    CAS  PubMed  Google Scholar 

  • Karaiskou A, Perez LH, Ferby I, Ozon R, Jessus C, Nebreda AR (2001) Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem 276:36028–36034

    CAS  PubMed  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    CAS  PubMed  Google Scholar 

  • Kasten M, Giordano A (2001) Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene 20:1832–1838

    CAS  PubMed  Google Scholar 

  • Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ (1993) Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 7:331–342

    CAS  PubMed  Google Scholar 

  • Ko TK, Kelly E, Pines J (2001) CrkRS: a novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles. J Cell Sci 114:2591–2603

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Stewart E, Poon R, Adamczewski JP, Gannon J, Hunt T (1992) Identification of the domains in cyclin A required for binding to, and activation of, p34cdc2 and p32cdk2 protein kinase subunits. Mol Biol Cell 3:1279–1294

    Google Scholar 

  • Kolonin MG, Finley RL Jr (2000) A role for cyclin J in the rapid nuclear division cycles of early Drosophila embryogenesis. Dev Biol 227:661–672

    CAS  PubMed  Google Scholar 

  • Kowalczyk A, Filipkowski RK, Rylski M, Wilczynski GM, Konopacki FA, Jaworski J, Ciemerych MA, Sicinski P, Kaczmarek L (2004) The critical role of cyclin D2 in adult neurogenesis. J Cell Biol 167:209–213

    CAS  PubMed  Google Scholar 

  • Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT et al (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491

    CAS  PubMed  Google Scholar 

  • Krokan HE, Drablos F, Slupphaug G (2002) Uracil in DNA – occurrence, consequences and repair. Oncogene 21:8935–8948

    CAS  PubMed  Google Scholar 

  • Krude T, Jackman M, Pines J, Laskey RA (1997) Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system. Cell 88:109–119

    CAS  PubMed  Google Scholar 

  • Krylov DM, Nasmyth K, Koonin EV (2003) Evolution of eukaryotic cell cycle regulation: stepwise addition of regulatory kinases and late advent of the CDKs. Curr Biol 13:173–177

    CAS  PubMed  Google Scholar 

  • Kume S, Endo T, Nishimura Y, Kano K, Naito K (2007) Porcine SPDYA2 (RINGO A2) stimulates CDC2 activity and accelerates meiotic maturation of porcine oocytes. Biol Reprod 76:440–447

    CAS  PubMed  Google Scholar 

  • Lalioti V, Pulido D, Sandoval IV (2010) Cdk5, the multifunctional surveyor. Cell Cycle 9:284–311

    CAS  PubMed  Google Scholar 

  • Lapidot-Lifson Y, Patinkin D, Prody CA, Ehrlich G, Seidman S, Ben-Aziz R, Benseler F, Eckstein F, Zakut H, Soreq H (1992) Cloning and antisense oligodeoxynucleotide inhibition of a human homolog of cdc2 required in hematopoiesis. Proc Natl Acad Sci USA 89:579–583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehner CF, O’Farrell PH (1989) Expression and function of Drosophila cyclin A during embryonic cell cycle progression. Cell 56:957–968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, Donoghue DJ (1999) Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J 18:1869–1877

    CAS  PubMed  Google Scholar 

  • Li T, Inoue A, Lahti JM, Kidd VJ (2004) Failure to proliferate and mitotic arrest of CDK11(p110/p58)-null mutant mice at the blastocyst stage of embryonic cell development. Mol Cell Biol 24:3188–3197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu D, Matzuk MM, Sung WK, Guo Q, Wang P, Wolgemuth DJ (1998) Cyclin A1 is required for meiosis in the male mouse. Nat Genet 20:377–380

    CAS  PubMed  Google Scholar 

  • Liu Y, Wu C, Galaktionov K (2004) p42, a novel cyclin-dependent kinase-activating kinase in mammalian cells. J Biol Chem 279:4507–4514

    CAS  PubMed  Google Scholar 

  • Lolli G, Johnson LN (2005) CAK-Cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 4:572–577

    CAS  PubMed  Google Scholar 

  • Loyer P, Trembley JH, Lahti JM, Kidd VJ (1998) The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo. J Cell Sci 111:1495–1506

    CAS  PubMed  Google Scholar 

  • Loyer P, Trembley JH, Grenet JA, Busson A, Corlu A, Zhao W, Kocak M, Kidd VJ, Lahti JM (2008) Characterization of cyclin L1 and L2 interactions with CDK11 and splicing factors: influence of cyclin L isoforms on splice site selection. J Biol Chem 283:7721–7732

    CAS  PubMed  Google Scholar 

  • Lukas J, Bartkova J, Rohde M, Strauss M, Bartek J (1995) Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol Cell Biol 15:2600–2611

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7:591–600

    CAS  PubMed  Google Scholar 

  • Makela TP, Tassan JP, Nigg EA, Frutiger S, Hughes GJ, Weinberg RA (1994) A cyclin associated with the CDK-activating kinase MO15. Nature 371:254–257

    CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30:630–641

    CAS  PubMed  Google Scholar 

  • Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S, Dubus P, Barbacid M (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118:493–504

    CAS  PubMed  Google Scholar 

  • Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, Morgan DO, Tsai LH, Wolgemuth DJ (2009) Cyclin-dependent kinases: a family portrait. Nat Cell Biol 11:1275–1276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meikrantz W, Schlegel R (1996) Suppression of apoptosis by dominant negative mutants of cyclin-dependent protein kinases. J Biol Chem 271:10205–10209

    CAS  PubMed  Google Scholar 

  • Momčilović O, Navara C, and Schatten G (2011) Cell cycle adaptations and maintenance of genomic integrity in embryonic stem cells and induced pluripotent stem cells. In: Kubiak JZ (ed) Cell Cycle in Development (Results and Problems in Cell Differentiation). Springer, Heidelberg

    Google Scholar 

  • Murphy M, Stinnakre MG, Senamaud-Beaufort C, Winston NJ, Sweeney C, Kubelka M, Carrington M, Brechot C, Sobczak-Thepot J (1997) Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nat Genet 15:83–86

    CAS  PubMed  Google Scholar 

  • Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221–234

    CAS  PubMed  Google Scholar 

  • Murray AW, Marks D (2001) Can sequencing shed light on cell cycling? Nature 409:844–846

    CAS  PubMed  Google Scholar 

  • Nash R, Tokiwa G, Anand S, Erickson K, Futcher AB (1988) The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 7:4335–4346

    CAS  PubMed  Google Scholar 

  • Nebreda AR (2006) CDK activation by non-cyclin proteins. Curr Opin Cell Biol 18:192–198

    CAS  PubMed  Google Scholar 

  • Niu Z, Shen A, Shen H, Jiang J, Zong H, Gu J (2005) Protein expression pattern of CDK11(p58) during testicular development in the mouse. Mol Cell Biochem 270:99–106

    CAS  PubMed  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna Pant HC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93:11173–11178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohtani K, DeGregori J, Nevins JR (1995) Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 92:12146–12150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M (1995) Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 15:2612–2624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okamoto K, Kamibayashi C, Serrano M, Prives C, Mumby MC, Beach D (1996) p53-dependent association between cyclin G and the B′ subunit of protein phosphatase 2A. Mol Cell Biol 16:6593–6602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okuda T, Cleveland JL, Downing JR (1992) PCTAIRE-1 and PCTAIRE-3, two members of a novel cdc2/CDC28-related protein kinase gene family. Oncogene 7:2249–2258

    CAS  PubMed  Google Scholar 

  • Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35:25–31

    CAS  PubMed  Google Scholar 

  • Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11:961–971

    CAS  PubMed  Google Scholar 

  • Parisi T, Beck AR, Rougier N, McNeil T, Lucian L, Werb Z, Amati B (2003) Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. EMBO J 22: 4794–4803

    CAS  PubMed  Google Scholar 

  • Parry DA, Mighell AJ, El-Sayed W, Shore RC, Jalili IK, Dollfus H, Bloch-Zupan A, Carlos R, Carr IM, Downey LM et al (2009) Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am J Hum Genet 84:266–273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng J, Zhu Y, Milton JT, Price DH (1998) Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 12:755–762

    CAS  PubMed  Google Scholar 

  • Petretti C, Savoian M, Montembault E, Glover DM, Prigent C, Giet R (2006) The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep 7:418–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pines J, Hunter T (1991) Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115:1–17

    CAS  PubMed  Google Scholar 

  • Polok B, Escher P, Ambresin A, Chouery E, Bolay S, Meunier I, Nan F, Hamel C, Munier FL, Thilo B et al (2009) Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am J Hum Genet 84:259–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poon RY, Yamashita K, Adamczewski JP, Hunt T, Shuttleworth J (1993) The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J 12:3123–3132

    CAS  PubMed  Google Scholar 

  • Porter LA, Dellinger RW, Tynan JA, Barnes EA, Kong M, Lenormand JL, Donoghue DJ (2002) Human Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J Cell Biol 157:357–366

    CAS  PubMed  Google Scholar 

  • Porter LA, Kong-Beltran M, Donoghue DJ (2003) Spy1 interacts with p27Kip1 to allow G1/S progression. Mol Biol Cell 14:3664–3674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajesh C, Pittman DL (2006) Cell cycle regulation in mammalian germ cells. Results Probl Cell Differ 42:343–367

    PubMed  Google Scholar 

  • Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22:44–52

    CAS  PubMed  Google Scholar 

  • Reed SI (1991) G1-specific cyclins: in search of an S-phase-promoting factor. Trends Genet 7:95–99

    CAS  PubMed  Google Scholar 

  • Rhee K, Wolgemuth DJ (1995) Cdk family genes are expressed not only in dividing but also in terminally differentiated mouse germ cells, suggesting their possible function during both cell division and differentiation. Dev Dyn 204:406–420

    CAS  PubMed  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368

    CAS  PubMed  Google Scholar 

  • Roig MB, Roset R, Ortet L, Balsiger NA, Anfosso A, Cabellos L, Garrido M, Alameda F, Brady HJ, Gil-Gomez G (2009) Identification of a novel cyclin required for the intrinsic apoptosis pathway in lymphoid cells. Cell Death Differ 16:230–243

    CAS  PubMed  Google Scholar 

  • Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP (1998) Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 395:237–243

    CAS  PubMed  Google Scholar 

  • Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K, Caceres JF, Dubus P, Malumbres M, Barbacid M (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448:811–815

    CAS  PubMed  Google Scholar 

  • Sato S, Tomomori-Sato C, Parmely TJ, Florens L, Zybailov B, Swanson SK, Banks CA, Jin J, Cai Y, Washburn MP et al (2004) A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell 14:685–691

    CAS  PubMed  Google Scholar 

  • Satyanarayana A, Kaldis P (2009) Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28:2925–2939

    CAS  PubMed  Google Scholar 

  • Savatier P, Huang S, Szekely L, Wiman KG, Samarut J (1994) Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9:809–818

    CAS  PubMed  Google Scholar 

  • Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J (1996) Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12:309–322

    CAS  PubMed  Google Scholar 

  • Schulze A, Zerfass K, Spitkovsky D, Middendorp S, Berges J, Helin K, Jansen-Durr P, Henglein B (1995) Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc Natl Acad Sci USA 92:11264–11268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79:551–555

    CAS  PubMed  Google Scholar 

  • Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levin SD, Geng Y, von Boehmer H, Sicinski P (2003) Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4:451–461

    CAS  PubMed  Google Scholar 

  • Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630

    CAS  PubMed  Google Scholar 

  • Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, Robker RL, Richards JS, McGinnis LK, Biggers JD et al (1996) Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384:470–474

    CAS  PubMed  Google Scholar 

  • Simone C, Bagella L, Bellan C, Giordano A (2002) Physical interaction between pRb and cdk9/cyclinT2 complex. Oncogene 21:4158–4165

    CAS  PubMed  Google Scholar 

  • Singh AM, Dalton S (2009) The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell 5:141–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    CAS  PubMed  Google Scholar 

  • Solomon MJ (1994) The function(s) of CAK, the p34cdc2-activating kinase. Trends Biochem Sci 19:496–500

    CAS  PubMed  Google Scholar 

  • Solomon MJ, Harper JW, Shuttleworth J (1993) CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15. EMBO J 12:3133–3142

    CAS  PubMed  Google Scholar 

  • Solvason N, Wu WW, Parry D, Mahony D, Lam EW, Glassford J, Klaus GG, Sicinski P, Weinberg R, Liu YJ et al (2000) Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int Immunol 12:631–638

    CAS  PubMed  Google Scholar 

  • Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21:8320–8333

    CAS  PubMed  Google Scholar 

  • Tamura K, Kanaoka Y, Jinno S, Nagata A, Ogiso Y, Shimizu K, Hayakawa T, Nojima H, Okayama H (1993) Cyclin G: a new mammalian cyclin with homology to fission yeast Cig1. Oncogene 8:2113–2118

    CAS  PubMed  Google Scholar 

  • Tetzlaff MT, Bai C, Finegold M, Wilson J, Harper JW, Mahon KA, Elledge SJ (2004) Cyclin F disruption compromises placental development and affects normal cell cycle execution. Mol Cell Biol 24:2487–2498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A, Kiyokawa H (1999) Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol Cell Biol 19:7011–7019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker DH, Maller JL (1991) Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature 354:314–317

    CAS  PubMed  Google Scholar 

  • Wang Y, and Blelloch R (2011) Cell cycle regulation by microRNAs in stem cells. Kubiak JZ (ed) Cell Cycle in Development (Results and Problems in Cell Differentiation). Springer, Heidelberg

    Google Scholar 

  • Wang S, Fischer PM (2008) Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol Sci 29:302–313

    PubMed  Google Scholar 

  • Wang CY, Shi JD, Yang P, Kumar PG, Li QZ, Run QG, Su YC, Scott HS, Kao KJ, She JX (2003) Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene 306:37–44

    CAS  PubMed  Google Scholar 

  • White J, Stead E, Faast R, Conn S, Cartwright P, Dalton S (2005) Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol Biol Cell 16:2018–2027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wianny F, Real FX, Mummery CL, Van Rooijen M, Lahti J, Samarut J, Savatier P (1998) G1-phase regulators, cyclin D1, cyclin D2, and cyclin D3: up-regulation at gastrulation and dynamic expression during neurulation. Dev Dyn 212:49–62

    CAS  PubMed  Google Scholar 

  • Wohlbold L, Larochelle S, Liao JC, Livshits G, Singer J, Shokat KM, Fisher RP (2006) The cyclin-dependent kinase (CDK) family member PNQALRE/CCRK supports cell proliferation but has no intrinsic CDK-activating kinase (CAK) activity. Cell Cycle 5:546–554

    CAS  PubMed  Google Scholar 

  • Won KA, Xiong Y, Beach D, Gilman MZ (1992) Growth-regulated expression of D-type cyclin genes in human diploid fibroblasts. Proc Natl Acad Sci USA 89:9910–9914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu M, Sheppard KA, Peng CY, Yee AS, Piwnica-Worms H (1994) Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol Cell Biol 14:8420–8431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamochi T, Nishimoto I, Okuda T, Matsuoka M (2001) ik3-1/Cables is associated with Trap and Pctaire2. Biochem Biophys Res Commun 286:1045–1050

    CAS  PubMed  Google Scholar 

  • Yang R, Muller C, Huynh V, Fung YK, Yee AS, Koeffler HP (1999) Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. Mol Cell Biol 19:2400–2407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoyama H, Gruss OJ, Rybina S, Caudron M, Schelder M, Wilm M, Mattaj IW, Karsenti E (2008) Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. J Cell Biol 180:867–875

    CAS  PubMed  Google Scholar 

  • Zauberman A, Lupo A, Oren M (1995) Identification of p53 target genes through immune selection of genomic DNA: the cyclin G gene contains two distinct p53 binding sites. Oncogene 10:2361–2366

    CAS  PubMed  Google Scholar 

  • Zhang T, Nanney LB, Luongo C, Lamps L, Heppner KJ, DuBois RN, Beauchamp RD (1997) Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res 57:169–175

    CAS  PubMed  Google Scholar 

  • Zong H, Chi Y, Wang Y, Yang Y, Zhang L, Chen H, Jiang J, Li Z, Hong Y, Wang H et al (2007) Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol Cell Biol 27:7125–7142

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Kaldis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gopinathan, L., Ratnacaram, C.K., Kaldis, P. (2011). Established and Novel Cdk/Cyclin Complexes Regulating the Cell Cycle and Development. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_16

Download citation

Publish with us

Policies and ethics