Skip to main content

Geodetic Application of Satellite Altimetry

  • Conference paper

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 126))

Abstract

Satellite altimetry has developed to an operational remote sensing technique with important applications to many geosciences. In the present paper we consider in particular geodetic applications of satellite altimetry. It is shown that this space technique not only allows mapping and monitoring a major part of the Earth surface, but also did contribute to essential improvements for the Earth gravity field. Even with the new dedicated gravity field missions of CHAMP, GRACE and GOCE satellite altimetry will be needed for the determination of the high-resolution gravity field. The mean sea level can be mapped and monitored for seasonal and secular changes through the combination of altimeter mission with different space-time sampling. The realisation of the global mean sea surface will help to unify national height systems, to clarify local sea level trends visible in tide gauge records and contribute to studies on the global sea level rise, the most prominent indicator of global change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuña, G,, and W. Bosch (2003). Absolute Comparison of Satellite Altimetry and Tide Gauge Registrations in Venezuela, IAG Symposium, This Volume.

    Google Scholar 

  • Acuña, G., W. Bosch and B. Meisel (2002). Correlation between Multi-Mission Altimeter Time Series and Tide Gauge Registrations in the Caribbean Sea, In IAG Symposium 124: Vertical Reference Systems, pp. 231–237, Springer-Verlag.

    Google Scholar 

  • Anderson, O., P. Knudsen, S. Kenyon and R. Trimmer (2000). The KMS99 Global Marine Gravity Field — Improvements and Accuracy Assesment, EGS General Assembly, Nice.

    Google Scholar 

  • Anderson, O., P. Knudsen and R. Trimmer (2001). The KMS2001 Global Mean Sea Surface and Gravity Field, Poster, IAG 2001 General Assembly, “Vistas For Geodesy In The New Millenium”, 2.–7. September 2001, Budapest, Ungary.

    Google Scholar 

  • Anzenhofer, M., and T. Gruber (1995). MSS93A: A New Sationary Sea Surface Combining One Year Upgraded ERS-1 Fast Delivery Data and 1987 GEOSAT Altimeter Data, Bulletin Gèodèsique, 69, pp. 157–163.

    Article  Google Scholar 

  • Anzenhofer, M., T. Gruber and M. Rentsch (1996). Global High Resolution Mean Sea Surface Based on ERS-1 35-and 168-Day Cycles and TOPEX Data, International Association of Geodesy Symposia, 116, Global Gravity Field and Its Temporal Variations, Springer.

    Google Scholar 

  • AVISO/Altimetry (1998). AVISO User Handbook, Corrected Sea Surface Heights (Corsshs), AVI-NT-Oll-311-CN, Edition 3.1.

    Google Scholar 

  • AVISO (1999). Side B TOPEX Altimeter Evaluation, AVI-NT-011-317-CN, Edition 1.0.

    Google Scholar 

  • Bosch, W. (1993). A Rigorous Least Squares Combination of Low and High Degree Spherical Harmonics, IAG General Meeting, Beijing, China.

    Google Scholar 

  • Bosch, W. (1997). Goeid and Orbit Corrections from Crossover Satellite Altimetry, Report No. 63, Deutsches Geodätisches Forschunginstitut, München.

    Google Scholar 

  • Bosch, W. (1999). Variations of Geocenter and Earth Orientation from Estimates of Ocean Mass Redistribution, The 22nd General Assembly of the IUGG.

    Google Scholar 

  • Bosch, W., J. Klokočnik, C. A. Wagner and J. Kostelecký (2000). Geosat and ERS-1 Datum Offsets Relative to TOPEX/POSEIDON Estimated Simultaneously with Geopotential Corrections from Multi-Satellite Crossover Altimetry, In: Rummel R., H. Drewes, W. Bosch, H. Hornik (Eds.) Towards an Integrated Global Geodetic Observing System (IGGOS). IAG Section II Symposia, 120, Springer, pp. 96–98.

    Google Scholar 

  • Bursa, M., J. Kouba, A. Müller, K. Radej, S. A. True, V. Vaut and M. Vojtiskova (1999). Differences between Mean Sea Levels for the Pacific, Atlantic and Indian Ocean from TOPEX/POSEIDON Altimetry, Stadia Geoph et Geod, 43, pp.1–6.

    Article  Google Scholar 

  • Bursa, M., S. Kenyon, J. Kouba, K. Radej, V. Vaut, M. Vojtiskova and J. Simek (2002). World Height System Specified by Geopotential at Tide Gauge Stations, In: Drewes H., A. Doodson, L.P.S. Fortes, L. Sanchez, P. Sandoval (Eds.) Vertical Reference Systems. IAG Symposia, 124, Springer, pp. 291–296.

    Google Scholar 

  • Cazenave, A., P. Schaeffer, M. Bergé, C. Brassier, K. Dominh, and M.C. Gennero (1996). High Resolution Mean Sea Surface Computed with Altimeter Data of ERS-1 and TOPEX-POSEIDON, Geophys J Int, 125, pp. 696–704.

    Article  Google Scholar 

  • Chambers, D., J. Ries, C. Shum and B. Tapley (1998). On the Use of Tide Gauges to Determine Altimeter Drift, J Geophys Res, 103, pp. 12885–12890.

    Article  Google Scholar 

  • Chelton, D. B., J. C. Ries, B. J. Haines, L. L. Fu and P. S. Callahan (2001). Satellite Altimetry, In: L.L. Fu and A. Cazenave (Eds.) Satellite Altimetry and Earth Sciences — A Handbook of Techniques and Applications. International Geophysical Series, 69, Academic Press, San Diego.

    Google Scholar 

  • Chen, J. L., C. R. Wilson, R. J. Eanes and R. S. Nerem (1999). Mass Variations in the Earth System and Geocenter Motions, IERS Technical Note 25, Observatoire De Paris, Paris, pp. 27–36.

    Google Scholar 

  • Christensen, E., et al. (1994). Calibration of TOPEX/POSEIDON at Platform Harvest, J Geophys Res, 99, pp. 24465–24485.

    Article  Google Scholar 

  • Dong, D., J. Dickey, Y. Chao and M. K. Cheng (1997). Geocenter Variations Caused by Atmosphere, Ocean and Surface Ground Water, Geophys Res Lett, 24, pp. 1867–1870.

    Article  Google Scholar 

  • Dong, X., P. Woodworm, P. Mooreand and R. Bingley (2002). Absolute Calibration of the TOPEX/POSEIDON Altimeters Using UK Tide Gauges, GPS, and Precise Local Geod-Differences, Mar Geod, 25, pp. 183–204.

    Article  Google Scholar 

  • Gross, R. (2002). Gravity, Oceanic Angular Momentum, and the Earth’s Rotation, In: Sideris M.G. (Ed.) Gravity, Geoid and Geodynamics 2000. IAG Symposia, 123, Springer, pp. 153–158.

    Google Scholar 

  • Gruber, T., A. Bode, C. Reigber, P. Schwintzer, G. Balmino, R. Biancale and J. M. Lemoine (2000). GRTM5-C1: Combination Solution of the Global Gravity Field to Degree and Order 120, Geophys Res Lett, 27, pp. 4005–4008.

    Article  Google Scholar 

  • Haxby, W. F., G. D. Karner, J. L. La Brecque and J. K. Weissel (1983). Digital Images of Combined Oceanic and Continental Data Sets and Their Use in Tectonic Studies, EOS Trans, 64, pp. 995–1004.

    Article  Google Scholar 

  • Hernandez, F., and P. Schaeffer (2001). The CLS01 Mean Sea Surface: A Validation with the GSFC00 Surface in Press, CLS Ramonville St Agne, France.

    Google Scholar 

  • Heiskanen, W. A., and H. Moritz (1967). Physical Geodesy, W.H. Freeman and Company, San Francisco.

    Google Scholar 

  • Imel, D. (1994). Evaluation of the TOPEX/POSEIDON Dual-Frequency Ionospheric Correction, J Geophys Res, 99, pp. 24895–24906.

    Article  Google Scholar 

  • Kaula, W. M. (1966). Theory of Satellite Geodesy — Application of Satellites to Geodesy, Blaisdell Publishing Company, Waltham, Massachusetts.

    Google Scholar 

  • Klokocnik, J., and C. A. Wagner (1999). Combinations of Satellite Crossovers to Study Orbit and Residual Errors in Altimetry. Celestial Mechanics and Dynamical Astronomy, 74, pp. 231–242.

    Article  Google Scholar 

  • Klokocnik, J., C. A. Wagner and J. Kostelecky (1996). Accuracy Assessment of Recent Earth Gravity Models Using Crossover Altimetry, Stadia Geop et Geod, 40, pp. 77–110.

    Article  Google Scholar 

  • Klokocnik, J., C. A. Wagner and J. Kostelecký (1999). Spectral Accuracy of JGM3 from Satellite Crossover Altimetry, J Geod, 73, pp. 138–146

    Article  Google Scholar 

  • Koblinsky, et al. (1999a). NASA Ocean Altimeter Pathfinder Project, Report 1: Data Processing Handbook, NASA/TM-1998-208605.

    Google Scholar 

  • Koblinsky, et al. (1999b). NASA Ocean Altimeter Pathfinder Project, Report 2: Data Set Validation, NASA/TM-1998-209230.

    Google Scholar 

  • Laxon, S. W., and D. Mcadoo (1994). Arctic Ocean Gravity Field Derived from ERS-1 Satellite Altimetry, Science, 256, pp. 621–624.

    Article  Google Scholar 

  • Le Traon, P. Y., and F. Ogor (1998). ERS-1/2 Orbit Improvement Using TOPEX/POSEIDON: The 2 cm Challenge, J Geophys Res, 103, pp. 8045–8057.

    Article  Google Scholar 

  • Lemoine, F., et al. (1997). The Development of the Joint NASA GSFC and the National Imagery and Mapping Agenvcy (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861, Goddard Space Flight Centre, Greenbelt.

    Google Scholar 

  • Levitus, S., T. Boyer and R. Bugett (1994). World Ocean Atlas 1994 (WOA94), NOAA Atlas NESDIS, U.S. Department Of Commerce, Washington D.C.

    Google Scholar 

  • Mcadoo, D. C, and K. M. Marks (1992a). Resolving Marine Gravity with ERS-1 Satellite Altimetry, Geophys Res Letters, 19, pp. 2271–2274.

    Article  Google Scholar 

  • Mcadoo, D. C, and K. M. Marks (1992b). Gravity Field of the Southern Ocean from Geosat Data, J Geophys Res, 97, pp. 3247–3260.

    Article  Google Scholar 

  • Mitchum, G. T. (1994). Comparison of TOPEX Sea Surface Heights and Tide Gauge Sea Levels, J. Geophys. Res., Vol. 99(C12), pp. 24541–24553.

    Article  Google Scholar 

  • Mitchum, G. T. (1998). Monitoring the Stability of Satellite Altimeters with Tide Gauges, J Atmos Ocean Tech, 15, pp. 721–730.

    Article  Google Scholar 

  • Mitchum, G. T. (2000). An Improved Calibartion of Satellite Altimetric Heights Using Tide Gauge Sea Levels with Adjustment For Land Motion, Mar Geod, 23, pp. 145–166.

    Article  Google Scholar 

  • Neilan, R., P. A. Van Scoy and P. L. Woodworm (1998). GPS and Tide Gauge Benchmark Monitoring and GPS Altimeter Calibration. Proceedings of the Workshop on Methods for Monitoring Sea Level, IGS-PSMSL, IGS Central Bureau, Pasadena, California, U.S.A.

    Google Scholar 

  • Nerem, R., R. Eanes, J. Riesand and G. Mitchum (1998). The Use of a Precise Reference Frame in Sea Level Change Studies, In: IAG Symposium 120, Towards an Integrated Global Geodetic Observing System (IGGOS), pp. 8–12, Springer-Verlag.

    Google Scholar 

  • Ries, J., R. Eanes and R. Nerem (1999). The ITRF97 Reference Frame and Its Effect on Sea Level Change Studies, TOPEX/POSEIDON and JASON-1 Science Working Team 1999 Meeting, October 25–27.

    Google Scholar 

  • Rummel, R., and R. Haagmanns (1991). Gravity Gradients from Satellite Altimetry, Mar Geod, 14, pp. 1–12.

    Article  Google Scholar 

  • Rosborough, G. W. (1986). Satellite Orbit Pertubations Du to the Geopotential, CSR-86-1, Univ. of Texas at Austin, Cente for Space Research.

    Google Scholar 

  • Sandwell, D. T., and W. H. F. Smith (1997). Marine Gravity from Geosat and ERS-1 Satellite Altimetry, J Geophys Res, 102, pp. 10039–10054.

    Article  Google Scholar 

  • Scharro, R., and P. N. A. M. Visser (1998). Precise Orbit Determination and Gravity Field Improvement for the ERS Satellites, J Geophys Res, 103, pp. 8113–8127.

    Article  Google Scholar 

  • Schuh, W. D. (1996). Tailored Numerical Solution Strategies for the Global Determination of the Earth Gravity Field, Techn Report, Inst. Theor. Geod., Techn Univ. Graz, Austria.

    Google Scholar 

  • Schrama, E. J. O. (1989). The Role of Orbit Errors in Processing of Satellite Altimeter Data, The Netherlands Geodetic Commission. Publication on Geodesy, No. 33, Delft.

    Google Scholar 

  • Shum, C. K., B. H. Zang, B. E. Schutz and B. D. Tapley (1990). Altimeter Crossover Methods for Precision Orbit Determination and the Mapping of Geophysical Parameters, J Astron Sei, 38, pp. 355–368.

    Google Scholar 

  • Semtner, A. J., and R. M. Chervin (1992). Ocean Circulation from a Global Eddy-Resolving Model, J Geophys Res, 97, pp. 5493–5550.

    Article  Google Scholar 

  • Smith, W., and D. Sandwell (1997). Global Seafloor Topography from Satellite Altimetry and Ship Depth Soundings, Science, 277, pp. 1956–1961.

    Article  Google Scholar 

  • Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C. N. Hill and J. Marshall (2003). Volume, Heat and Freshwater Transports of the Global Ocean Circulation 1993-2000, Estimated from a General Circulation Model Constrained by World Ocean Circulation Experiment (WOCE) Data, J Geophys Res, 108, 3007.

    Article  Google Scholar 

  • Wang, Y. M. (2001). GSFC00 Mean Sea Surface, Anomaly and Vertical Gravity Gradient from Satellite Altimeter Data, J Geophys Res, 106, pp. 31167–31174.

    Google Scholar 

  • Wagner, C, and J. Klokocnik (1995). The Role of Geodetic Errors in Connecting Ocean Surfaces over Disparate Satellite Altimeter Missions, IUGG GA Boulder.

    Google Scholar 

  • Wagner, C. A., J. Klokocnik and R. Cheney (1997). Making the Connection between Geosat and TOPEX/POSEIDON, J Geod, 71, pp. 273–281.

    Article  Google Scholar 

  • Wahr, J., M. Molenaar and F. Bryan (1998). Time Variability of the Earth’s Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE, J Geophys Res, 103, pp. 30205–30229.

    Article  Google Scholar 

  • Wunsch, C, and D. Stammer (2003). Global Ocean Data Assimilation and Geoid Measurements, Space Sei Rev, In Press.

    Google Scholar 

  • Yunck, T. P., W. I. Bertiger, S. C. Wu, Y. Bar-Sever, E. J. Christensen, B. J. Haines, S. M. Lichten, R. J. Muellerschoen, Y. Vigue and P. Willis (1994). First Assessment of GPS-Based Reduced Dynamic Orbit Determination on TOPEX/POSEIDON, Geophy Res Lett, 21, pp. 541–544.

    Article  Google Scholar 

  • Yi, Y. (1995). Determination of Gridded Mean Sea Surface from TOPEX, ERS-1, and GEOSAT Altimeter Data, Rep. 434, Dept. Geod. Sci.Surv., The Ohio State Univ., Colombus, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bosch, W. (2003). Geodetic Application of Satellite Altimetry. In: Hwang, C., Shum, C.K., Li, J. (eds) Satellite Altimetry for Geodesy, Geophysics and Oceanography. International Association of Geodesy Symposia, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18861-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18861-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62329-5

  • Online ISBN: 978-3-642-18861-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics