Skip to main content

Effect-Directed Analysis of Mutagens in Ambient Airborne Particles

  • Chapter
  • First Online:
Effect-Directed Analysis of Complex Environmental Contamination

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 15))

Abstract

This chapter reviews the major advances and challenges in effect-directed analysis (EDA) of mutagenic chemicals in ambient airborne particles. Mutagens are chemicals that can cause mutations – inheritable changes in the genetic code that can give rise to adverse health effects. The majority of studies dealing with EDA of mutagens in airborne particles combine liquid chromatographic fractionation of particle extracts with short-term mutagenicity assays and chemical analysis by gas chromatography–mass spectrometry. A variety of bacterial and human-cell lines with different metabolic capabilities have been used, allowing the measurement of different classes of chemical mutagens. The mutagens most frequently detected in non-polar and semi-polar fractions of airborne particles include unsubstituted polycyclic aromatic hydrocarbons (PAH) and substituted PAH, such as alkyl-PAH, nitro-PAH, hydroxynitro-PAH, nitro-PAH lactones, and PAH ketones. These compounds account for <20–25% of the total mutagenicity of unfractionated samples. The remaining mutagenicity is present in fractions containing more polar compounds. Analytical challenges that have slowed the pace of mutagen identification include the chemical complexity of particle extracts and their fractions, relative paucity of reference standards (particularly polar compounds), and interaction effects among sample constituents. The use of other genotoxicity measures, such as DNA-adduct formation and DNA damage, may help to identify the most important genotoxic compounds in airborne particles. Similarly, EDA studies of size-fractionated airborne particles may help to identify mutagens and other genotoxic chemicals in those size fractions most relevant to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leiter J, Shimkin MB, Shear MJ (1942) Production of subcutaneous sarcomas in mice with tars extracted from atmospheric dusts. J Natl Cancer Inst 3:155–165

    CAS  Google Scholar 

  2. Leiter J, Shear MJ (1942) Production of tumors in mice with tars from city air dusts. J Natl Cancer Inst 3:167–174

    CAS  Google Scholar 

  3. Kotin P, Falk HL, Mader P, Thomas M (1954) Aromatic hydrocarbons. I. Presence in the Los Angeles atmosphere and the carcinogenicity of atmospheric extracts. A M A Arch Ind Hyg Occup Med 9:153–163

    CAS  Google Scholar 

  4. Hueper WC, Kotin P, Tabor EC, Payne WW, Falk H, Sawicki E (1962) Carcinogenic bioassay on air pollutants. Arch Pathol 74:89–116

    CAS  Google Scholar 

  5. Epstein SS, Joshi S, Andrea J, Mantel N, Sawicki E, Stanley T, Tabor EC (1966) Carcinogenicity of organic particulate pollutants in urban air after administration of trace quantities to neonatal mice. Nature 212:1305–1307

    Article  CAS  Google Scholar 

  6. Asahina S, Andrea J, Carmel A, Arnold E, Bishop Y, Joshi S, Coffin D, Epstein SS (1972) Carcinogenicity of organic fractions of particulate pollutants collected in New York City and administered subcutaneously to infant mice. Cancer Res 32:2263–2268

    CAS  Google Scholar 

  7. Graedel TE, Hawkins DT, Claxton LD (1986) Atmospheric chemical compounds: sources, occurrence, and bioassay. Academic, Orlando, FL

    Google Scholar 

  8. Claxton LD, Matthews PP, Warren SH (2004) The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat Res 567:347–399

    Article  CAS  Google Scholar 

  9. Claxton LD, Woodall GM Jr (2007) A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat Res 636:36–94

    Article  CAS  Google Scholar 

  10. Schuetzle D, Lewtas J (1986) Bioassay-directed chemical analysis in environmental research. Anal Chem 58:1060A–1075A

    Article  CAS  Google Scholar 

  11. Lewtas J, Chuang J, Nishioka M, Petersen B (1990) Bioassay-directed fractionation of the organic extract of SRM-1649 urban air particulate matter. Int J Environ Anal Chem 39:245–256

    Article  CAS  Google Scholar 

  12. Zinbo M, Schuetzle D, Hsieh DPH, Kado NY, Daisey JM (1992) An improved fractionation procedure for the bioassay-directed chemical analysis of ambient air particulate extracts. Anal Sci 8:461–468

    Article  CAS  Google Scholar 

  13. Casellas M, Fernandez P, Bayona JM, Solanas AM (1995) Bioassay-directed chemical-analysis of genotoxic components in urban airborne particulate matter from Barcelona (Spain). Chemosphere 30:725–740

    Article  CAS  Google Scholar 

  14. Arey J, Zielinska B, Harger WP, Atkinson R, Winer AM (1988) The contribution of nitrofluoranthenes and nitropyrenes to the mutagenic activity of ambient particulate organic matter collected in southern California. Mutat Res 207:45–51

    Article  CAS  Google Scholar 

  15. Nishioka MG, Howard CC, Contos DA, Ball LM, Lewtas J (1988) Detection of hydroxylated nitro aromatic and hydroxylated nitro polycyclic aromatic compounds in an ambient air particulate extract using bioassay-directed fractionation. Environ Sci Technol 22:908–915

    Article  CAS  Google Scholar 

  16. Pyysalo H, Tuominen J, Wickstrom K, Skytta E, Tikkanen L, Salomaa S, Sorsa M, Nurmela T, Mattila T, Pohjola V (1987) Polycyclic organic material (POM) in urban air. Fractionation, chemical analysis and genotoxicity of particulate and vapour phases in an industrial town in Finland. Atmos Environ 21:1167–1180

    Article  CAS  Google Scholar 

  17. Siak J, Chan TL, Gibson TL, Wolff GT (1985) Contribution to bacterial mutagenicity from nitro-pah compounds in ambient aerosols. Atmos Environ 19:369–376

    Article  CAS  Google Scholar 

  18. Helmig D, Arey J, Harger WP, Atkinson R, Lopez-Cancio J (1992) Formation of mutagenic nitrodibenzopyranones and their occurrence in ambient air. Environ Sci Technol 26:622–624

    Article  CAS  Google Scholar 

  19. Tokiwa H, Morita K, Takeyoshi H, Takahashi K, Ohnishi Y (1977) Detection of mutagenic activity in particulate air pollutants. Mutat Res 48:237–248

    Article  CAS  Google Scholar 

  20. Savard S, Otson R, Douglas GR (1992) Mutagenicity and chemical-analysis of sequential organic extracts of airborne-particulates. Mutat Res 276:101–115

    CAS  Google Scholar 

  21. Enya T, Sukuzi H, Watanabe T, Hirayama T, Hisamatsu Y (1997) 3-Nitrobenzanthrone, a powerful bacterial mutagen and suspected human carcinogen found in diesel exhaust and airborne particulates. Environ Sci Technol 31:2772–2776

    Article  CAS  Google Scholar 

  22. Cerná M, Pochmanová D, Pastorková A, Benes I, Lenícek J, Topinka J, Binková B (2000) Genotoxicity of urban air pollutants in the Czech Republic. Part I. Bacterial mutagenic potencies of organic compounds adsorbed on PM10 particulates. Mutat Res 469:71–82

    Google Scholar 

  23. Matsumoto H, Inoue K (1987) Mutagenicity of a polar portion in the neutral fraction separated from organic extracts of airborne particulates. Arch Environ Contam Toxicol 16:409–416

    Article  CAS  Google Scholar 

  24. De Martinis BS, Kado NY, de Carvalho LR, Okamoto RA, Gundel LA (1999) Genotoxicity of fractionated organic material in airborne particles from São Paulo, Brazil. Mutat Res 446:83–94

    Google Scholar 

  25. de Raat WK, Boers JP, Bakker GL, de Meijere FA, Hooimeijer A, Lohman PHM, Mohn GR (1994) Contribution of PAH and some of their nitrated derivatives to the mutagenicity of ambient airborne particles and coal fly ash. Sci Total Environ 153:7–28

    Article  Google Scholar 

  26. Kameda T, Inazu K, Bandow H, Sanukida S, Maeda Y (2004) Diurnal change of direct-acting mutagenicity of soluble organic fraction of airborne particles collected at Southern Osaka: correlation between the mutagenicity, particles-associated nitroarenes, and gaseous emission. Atmos Environ 30:1903–1912

    Article  CAS  Google Scholar 

  27. Du Four VA, Janssen CR, Brits E, Van Larebeke N (2005) Genotoxic and mutagenic activity of environmental air samples from different rural, urban and industrial sites in Flanders, Belgium. Mutat Res 588:106–117

    Google Scholar 

  28. Hannigan MP, Cass GR, Penman BW, Crespi CL, Lafleur AL, Busby WF, Thilly WG, Simoneit BRT (1998) Bioassay-directed chemical analysis of Los Angeles airborne particulate matter using a human cell mutagenicity assay. Environ Sci Technol 32:3502–3514

    Article  CAS  Google Scholar 

  29. Pedersen DU, Durant JL, Taghizadeh K, Hemond HF, Lafleur AL, Cass GR (2005) Human cell mutagens in respirable airborne particles from the northeastern United States. 2. Quantification of mutagens and other organic compounds. Environ Sci Technol 39:9547–9560

    Article  CAS  Google Scholar 

  30. Durant JL, Lafleur AL, Plummer EF, Taghizadeh K, Busby WF, Thilly WG (1998) Human lymphoblast mutagens in urban airborne particles. Environ Sci Technol 32:1894–1906

    Article  CAS  Google Scholar 

  31. Binková B, Cerná M, Pastorková A, Jelínek R, Benes I, Novák J, Srám RJ (2003) Biological activities of organic compounds adsorbed onto ambient air particles: comparison between the cities of Teplice and Prague during the summer and winter seasons 2000–2001. Mutat Res 525:43–59

    Article  CAS  Google Scholar 

  32. Sharma AK, Jensen KA, Rank J, White PA, Lundstedt S, Gagne R, Jacobsen NR, Kristiansen J, Vogel U, Wallin H (2007) Genotoxicity, inflammation and physico-chemical properties of fine particle samples from an incineration energy plant and urban air. Mutat Res 633:95–111

    CAS  Google Scholar 

  33. Lewtas J (2007) Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res 636:95–133

    Article  CAS  Google Scholar 

  34. Marvin CH, Hewitt LM (2007) Analytical methods in bioassay-directed investigations of mutagenicity of air particulate material. Mutat Res 636:4–35

    Article  CAS  Google Scholar 

  35. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377:397–407

    Article  CAS  Google Scholar 

  36. Alfheim I, Lindskog A (1984) A comparison between different high volume sampling systems for collecting ambient airborne particles for mutagenicity testing and for analysis of organic compounds. Sci Total Environ 34:203–222

    Article  CAS  Google Scholar 

  37. Houk VS, Zweidinger RB, Claxton LD (1987) Mutagenicity of teflon-coated glass fiber filters: a potential problem and solutions. Environ Sci Technol 21:917–920

    Article  CAS  Google Scholar 

  38. Arey J, Harger WP, Helmig D, Atkinson R (1992) Bioassay-directed fractionation of mutagenic PAH atmospheric photooxidation products and ambient particulate extracts. Mutat Res 281:67–76

    Article  CAS  Google Scholar 

  39. Binková B, Topinka J, Sram RJ, Sevastyanova O, Novakova Z, Schmuczerova J, Kalina I, Popov T, Farmer PB (2007) In vitro genotoxicity of PAH mixtures and organic extract from urban air particles part I: acellular assay. Mutat Res 620:114–22

    Article  CAS  Google Scholar 

  40. Greenberg A, Lwo J-H, Atherholt TB, Rosen R, Hartman T, Butler J, Louis J (1993) Bioassay-directed fractionation of organic compounds associated with airborne particulate matter: an interseasonal study. Atmos Environ 27A:1609–1626

    CAS  Google Scholar 

  41. Hannigan MP, Cass GR, Lafleur AL, Busby WF Jr, Thilly WG (1996) Seasonal and spatial variation of the bacterial mutagenicity of fine organic aerosol in southern California. Environ Health Perspect 104:428–436

    Article  CAS  Google Scholar 

  42. Pedersen DU, Durant JL, Penman BW, Crespi CL, Hemond HF, Lafleur AL, Cass GR (1999) Seasonal and spatial variations in human cell mutagenicity of respirable airborne particles in the Northeastern United States. Environ Sci Technol 33:4407–4415

    Article  CAS  Google Scholar 

  43. Calderón-Segura ME, Gómez-Arroyo S, Villalobos-Pietrini R, Butterworth FM, Amador-Muñoz O (2004) The effects of seasonal weather on the genotoxicity, cytokinetic properties, cytotoxicity and organochemical content of extracts of airborne particulates in Mexico City. Mutat Res 558:7–17

    Google Scholar 

  44. Erdinger L, Dörr I, Dürr M, Höpker KA (2004) Analysis of mutagenic activity of airborne particulate matter, standard reference materials and reference compounds using base pair-specific Salmonella typhimurium tester strains. Mutat Res 564:149–157

    CAS  Google Scholar 

  45. Du Four VA, Van Larebeke N, Janssen CR (2004) Genotoxic and mutagenic activity of environmental air samples in Flanders, Belgium. Mutat Res 558:155–167

    Google Scholar 

  46. Sevastyanova O, Novakova Z, Hanzalova K, Binková B, Srám RJ, Topinka J (2008) Temporal variation in the genotoxic potential of urban air particulate matter. Mutat Res 649:179–186

    CAS  Google Scholar 

  47. Brits E, Schoeters G, Verschaeve L (2004) Genotoxicity of PM10 and extracted organics collected in an industrial, urban and rural area in Flanders, Belgium. Environ Res 96:109–118

    Article  CAS  Google Scholar 

  48. Škarek M, Janošek J, Čupr P, Kohoutek J, Novotná-Rychetská A, Holoubek I (2007) Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays. Environ Int 33:859–66

    Article  CAS  Google Scholar 

  49. Monarca S, Crebelli R, Feretti D, Zanardini A, Fuselli S, Filini L, Resola S, Bonardelli PG, Nardi G (1997) Mutagens and carcinogens in size-classified air particulates of a northern Italian town. Sci Total Environ 205:137–144

    Article  CAS  Google Scholar 

  50. Pagano P, de Zaiacomo T, Scarcella E, Bruni S, Calamosca M (1996) Mutagenic activity of total and particle-sized fractions of urban particulate matter. Environ Sci Technol 30:3512–3516

    Article  CAS  Google Scholar 

  51. Hayakawa K, Kawaguchi Y, Murahashi T, Miyazaki M (1995) Distributions of nitropyrenes and mutagenicity in airborne particulates collected with an Andersen sampler. Mutat Res 348:57–61

    Article  CAS  Google Scholar 

  52. Viras LG, Athanasiou K, Siskos PA (1990) Determination of mutagenic activity of airborne particulates and of the benzo[a]pyrene concentrations in Athens atmosphere. Atmos Environ 24B:267–274

    Google Scholar 

  53. Healey K, Lingard JJ, Tomlin AS, Hughes A, White KL, Wild CP, Routledge MN (2005) Genotoxicity of size-fractionated samples of urban particulate matter. Environ Mol Mutagen 45:380–387

    Article  CAS  Google Scholar 

  54. de Kok TM, Hogervorst JG, Briede JJ, van Herwijnen MH, Moonen MLM, EJ DHA, Kleinjans JC (2005) Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter. Environ Mol Mutagen 46:71–80

    Article  CAS  Google Scholar 

  55. Motta S, Librando V, Minniti Z, Federico C, Saccone S (2006) Identification of genotoxic compounds in the airborne particulate matter endowed by small aerodynamic diameter in the city of Catania (Italy). Ann Chim 96:537–542

    Article  CAS  Google Scholar 

  56. de Castro MDL, Garcia-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10

    Article  Google Scholar 

  57. Lafleur AL, Pangaro N (1981) Artifact formation in the Soxhlet extraction of environmental samples with acetone. Anal Lett A 14:1613–1624

    CAS  Google Scholar 

  58. Ryno M, Rantanen L, Papaioannou E, Konstandopoulos AG, Koskentalo T, Savela K (2006) Comparison of pressurized fluid extraction, Soxhlet extraction and sonication for the determination of polycyclic aromatic hydrocarbons in urban air and diesel exhaust particulate matter. J Environ Monit 8:488–493

    Article  CAS  Google Scholar 

  59. Hawthorne SB, Grabanski CB, Martin E, Miller DJ (2000) Comparisons of soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. J Chromatogr A 892:421–433

    Article  CAS  Google Scholar 

  60. Turrio-Baldassarri L, Battistelli CL, Iamiceli AL (2003) Evaluation of the efficiency of extraction of PAHs from diesel particulate matter with pressurized solvents. Anal Bioanal Chem 375:589–595

    CAS  Google Scholar 

  61. Camel V (2000) Microwave-assisted solvent extraction of environmental samples. Trends Anal Chem 19:229–248

    Article  CAS  Google Scholar 

  62. Eskilsson CS, Bjorklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr A 902:227–250

    Article  CAS  Google Scholar 

  63. Srogi K (2006) A review: application of microwave techniques for environmental analytical chemistry. Anal Lett 39:1261–1288

    Article  CAS  Google Scholar 

  64. Belanger JMR, Pare JRJ (2006) Applications of microwave-assisted processes to environmental analysis. Anal Bioanal Chem 386:1049–1058

    Article  CAS  Google Scholar 

  65. Camel V (2001) Recent extraction techniques for solid matrices-supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls. Analyst 126:1182–1193

    Article  CAS  Google Scholar 

  66. Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C (1996) Accelerated solvent extraction: a technique for sample preparation. Anal Chem 68:1033–1039

    Article  CAS  Google Scholar 

  67. Perraudin E, Budzinski H, Villenave E (2005) Analysis of polycyclic aromatic hydrocarbons adsorbed on particles of atmospheric interest using pressurised fluid extraction. Anal Bioanal Chem 383:122–131

    Article  CAS  Google Scholar 

  68. Schantz MM (2006) Pressurized liquid extraction in environmental analysis. Anal Bioanal Chem 386:1043–1047

    Article  CAS  Google Scholar 

  69. Primbs T, Genualdi S, Simonich SM (2008) Solvent selection for pressurized liquid extraction of polymeric sorbents used in air sampling. Environ Toxicol Chem 27:1267–1272

    Article  CAS  Google Scholar 

  70. Ramos L, Kristenson EM, Brinkman UAT (2002) Current use of pressurized liquid extraction and subcritical water extraction in environmental analysis. J Chromatogr A 975:3–29

    Article  CAS  Google Scholar 

  71. Raynie DE (2006) Modern extraction techniques. Anal Chem 78:3997–4003

    Article  CAS  Google Scholar 

  72. Lee ML, Novotny MV, Bartle KD (1981) Analytical chemistry of polycyclic aromatic compounds. Academic, New York

    Google Scholar 

  73. Lafleur AL, Wornat MJ (1988) Multimode separation of polycyclic aromatic compounds by size exclusion chromatography with poly(divinylbenzene). Anal Chem 60:1096–1102

    Article  CAS  Google Scholar 

  74. Jiao K, Lafleur AL (1997) Improved detection of polycyclic aromatic compounds in complex mixtures by liquid chromatographic fractionation on poly(divinylbenzene) prior to gas chromatography-mass spectrometry. Application to the analysis of diesel particulates. J Chromatogr A 791:203–211

    Article  CAS  Google Scholar 

  75. Leary JA, Lafleur AL, Liber HL, Blemann K (1983) Chemical and toxicologic characterization of fossil fuel combustion product phenalen-1-one. Anal Chem 55:758–761

    Article  CAS  Google Scholar 

  76. Leary JA, Biemann K, Lafleur AL, Kruzel EL, Prado GP, Longwell JP, Peters WA (1987) Chemical and toxicological characterization of residential oil burner emissions: I. Yields and chemical characterization of extractables from combustion of No. 2 fuel oil at different Bacharach Smoke Numbers and firing cycles. Environ Health Perspect 73:223–234

    Article  CAS  Google Scholar 

  77. Braun AG, Busby WF Jr, Liber HL, Thilly WG (1987) Chemical and toxicological characterization of residential oil burner emissions: II. Mutagenic, tumorigenic, and potential teratogenic activity. Environ Health Perspect 73:235–246

    Article  CAS  Google Scholar 

  78. Gundel LA, Daisey JM, Decarvalho LRF, Kado NY, Schuetzle D (1993) Polar organic-matter in airborne particles – chemical characterization and mutagenic activity. Environ Sci Technol 27:2112–2119

    Article  CAS  Google Scholar 

  79. Lewtas J, Lewis C, Zweidinger R, Stevens R, Cupitt L (1992) Sources of genotoxicity and cancer risk in ambient air. Pharmacogenet 2:288–296

    Article  CAS  Google Scholar 

  80. Lafleur AL, Braun AG, Monchamp PA, Plummer EF (1986) Preserving toxicologic activity during chromatographic fractionation of bioactive complex mixtures. Anal Chem 58:568–572

    Article  CAS  Google Scholar 

  81. Thilly WG, Longwell J, Andon BM (1983) General approach to the biological analysis of complex mixtures. Environ Health Perspect 48:129–36

    Article  CAS  Google Scholar 

  82. Skopek TR, Liber HL, Kaden DA, Hites RA, Thilly WG (1979) Mutation of human cells by kerosene soot. J Natl Cancer Inst 63:309–312

    CAS  Google Scholar 

  83. Lafleur AL, Longwell JP, Marr JA, Monchamp PA, Plummer EF, Thilly WG, Mulder PP, Boere BB, Cornelisse J, Lugtenburg J (1993) Bacterial and human cell mutagenicity study of some C18H10 cyclopenta-fused polycyclic aromatic hydrocarbons associated with fossil fuels combustion. Environ Health Perspect 101:146–153

    CAS  Google Scholar 

  84. Busby WF Jr, Penman BW, Crespi CL (1994) Human cell mutagenicity of mono- and dinitropyrenes in metabolically competent MCL-5 cells. Mutat Res 322:233–242

    Article  CAS  Google Scholar 

  85. Busby WF Jr, Smith H, Crespi CL, Penman BW, Lafleur AL (1997) Mutagenicity of the atmospheric transformation products 2-nitrofluoranthene and 2-nitrodibenzopyranone in Salmonella and human cell forward mutation assays. Mutat Res 389:261–270

    CAS  Google Scholar 

  86. Durant JL, Busby WF Jr, Lafleur AL, Penman BW, Crespi CL (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res 371:123–157

    Article  CAS  Google Scholar 

  87. Sasaki JC, Arey J, Eastmond DA, Parks KK, Grosovsky AJ (1997) Genotoxicity induced in human lymphoblasts by atmospheric reaction products of naphthalene and phenanthrene. Mutat Res 393:23–35

    CAS  Google Scholar 

  88. Durant JL, Lafleur AL, Busby WF Jr, Donhoffner LL, Penman BW, Crespi CL (1999) Mutagenicity of C24H14 PAH in human cells expressing CYP1A1. Mutat Res 446:1–14

    CAS  Google Scholar 

  89. Phousongphouang PT, Grosovsky AJ, Eastmond DA, Covarrubias M, Arey J (2000) The genotoxicity of 3-nitrobenzanthrone and the nitropyrene lactones in human lymphoblasts. Mutat Res 472:93–103

    CAS  Google Scholar 

  90. McCann J, Choi E, Yamasaki E, Ames BN (1975) Detection of carcinogens as mutagens in the Salmonella microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA 72:5135–5139

    Article  CAS  Google Scholar 

  91. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 31:347–364

    CAS  Google Scholar 

  92. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    CAS  Google Scholar 

  93. Rosenkranz HS, Mermelstein R (1983) Mutagenicity and genotoxicity of nitroarenes. All nitro-containing chemicals were not created equal. Mutat Res 14:217–267

    Google Scholar 

  94. Watanabe M, Sofuni T, Nohmi T (1993) Comparison of the sensitivity of Salmonella typhimurium strains YG1024 and YG1012 for detecting the mutagenicity of aromatic amines and nitroarenes. Mutat Res 301:7–12

    Article  CAS  Google Scholar 

  95. Hagiwara Y, Watanabe M, Oda Y, Sofuni T, Nohmi T (1993) Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possessing elevated levels of both nitroreductase and acetyltransferase activity. Mutat Res 291:171–180

    CAS  Google Scholar 

  96. Kado NY, Guirguis GN, Flessel CP, Chan RC, Chang KI, Wesolowski JJ (1986) Mutagenicity of fine (less than 2.5 microns) airborne particles: diurnal variation in community air determined by a Salmonella micro preincubation (microsuspension) procedure. Environ Mutagen 8:53–66

    Article  CAS  Google Scholar 

  97. Hannigan MP, Cass GR, Penman BW, Crespi CL, Lafleur AL, Busby WF, Thilly WG (1997) Human cell mutagens in Los Angeles air. Environ Sci Technol 31:438–447

    Article  CAS  Google Scholar 

  98. Pedersen DU, Durant JL, Penman BW, Crespi CL, Hemond HF, Lafleur AL, Cass GR (2004) Human-cell mutagens in respirable airborne particles in the northeastern United States. 1. Mutagenicity of fractionated samples. Environ Sci Technol 38:682–689

    Article  CAS  Google Scholar 

  99. Crespi CL, Thilly WG (1984) Assay for gene mutation in a human lymphoblast line, AHH-1, competent for xenobiotic metabolism. Mutat Res 128:221–230

    Article  CAS  Google Scholar 

  100. Penman BW, Chen LP, Gelboin HV, Gonzalez FJ, Crespi CL (1994) Development of a human lymhoblastoid cell line constitutively expressing human CYP1A1 cDNA: substrate specificity with model substrates and promutagens. Carcinogenesis 15:1931–1937

    Article  CAS  Google Scholar 

  101. Abian J (1999) The coupling of gas and liquid chromatography with mass spectrometry. J Mass Spectrom 34:157–168

    Article  CAS  Google Scholar 

  102. Lee HK (1995) Recent applications of gas and high-performance liquid-chromatographic techniques to the analysis of polycyclic aromatic-hydrocarbons in airborne-particulates. J Chromatogr A 710:79–92

    Article  CAS  Google Scholar 

  103. Barale R, Giromini L, Delry S, Barnini B, Bulleri M, Barrai I, Valerio F, Pala M, He J (1994) Chemical and mutagenic patterns of airborne particulate matter collected in 17 Italian towns. Environ Health Perspect 102:67–73

    CAS  Google Scholar 

  104. White CM (1985) Nitrated polycyclic aromatic hydrocarbons. Huthig, Heidelberg

    Google Scholar 

  105. Giancarlo P, Tomasello M, Librando V, Minniti Z (2005) Nitrated polycyclic aromatic hydrocarbons in the environment: formation, occurrences and analysis. Ann Chim 95:567–577

    Article  Google Scholar 

  106. Zielinska B, Samy S (2006) Analysis of nitrated polycyclic aromatic hydrocarbons. Anal Bioanal Chem 386:883–890

    Article  CAS  Google Scholar 

  107. Albinet A, Leoz-Garziandia E, Budzinski H, ViIlenave E (2006) Simultaneous analysis of oxygenated and nitrated polycyclic aromatic hydrocarbons on standard reference material 1649a (urban dust) and on natural ambient air samples by gas chromatography-mass spectrometry with negative ion chemical ionisation. J Chromatogr A 1121:106–113

    Article  CAS  Google Scholar 

  108. Bezabeh DZ, Bamford HA, Schantz MM, Wise SA (2003) Determination of nitrated polycyclic aromatic hydrocarbons in diesel particulate-related standard reference materials by using gas chromatography/mass spectrometry with negative ion chemical ionization. Anal Bioanal Chem 375:381–388

    CAS  Google Scholar 

  109. Clar E (1964) Polycyclic hydrocarbons. Academic, New York

    Google Scholar 

  110. Biggs WR, Fetzer JC (2002) Electronic spectral detection in liquid chromatography. Anal Bioanal Chem 373:368–377

    Article  CAS  Google Scholar 

  111. Fetzer JC, Biggs WR (1987) Retention behavior of large polycyclic aromatics in bonded-phase high-performance liquid-chromatography. J Chromatogr 386:87–101

    Article  CAS  Google Scholar 

  112. Biggs WR, Fetzer JC (1996) Analytical techniques for large polycyclic aromatic hydrocarbons: a review. Trends Anal Chem 15:196–206

    CAS  Google Scholar 

  113. Lafleur AL, Howard JB, Plummer E, Taghizadeh K, Necula A, Scott LT, Swallow KC (1998) Identification of some novel cyclopenta-fused polycyclic aromatic hydrocarbons in ethylene flames. Polycycl Aromat Compd 12:223–237

    Article  CAS  Google Scholar 

  114. Marr JA, Giovane LM, Longwell JP, Howard JB, Lafleur AL (1994) Soot and tar production in a jet-stirred plug-flow reactor system – high and low C2H2 concentration environments. Combust Sci Technol 101:301–309

    Article  CAS  Google Scholar 

  115. Lippa KA, Rimmer CA, Sander LC (2008) Shape selectivity in reversed-phase liquid chromatography. Adv Chromatogr 46:235–303

    CAS  Google Scholar 

  116. Sander LC, Wise SA (1995) Influence of stationary-phase chemistry on shape-recognition in liquid-chromatography. Anal Chem 67:3284–3292

    Article  CAS  Google Scholar 

  117. Lafleur AL, Howard JB, Taghizadeh K, Plummer EF, Scott LT, Necula A, Swallow KC (1996) Identification of C20H10 dicyclopentapyrenes in flames: correlation with corannulene and fullerene formation. J Phys Chem 100:17421–17428

    Article  CAS  Google Scholar 

  118. Lafleur AL, Monchamp PA, Plummer EF, Wornat MJ (1987) Universal calibration method for the determination of polycyclic aromatic hydrocarbons by high-performance liquid-chromatography with broad-band diode-array detection. Anal Lett 20:1171–1192

    CAS  Google Scholar 

  119. Eisenstadt E, Gold A (1978) Cyclopenta[cd]pyrene – highly mutagenic polycyclic aromatic hydrocarbon. Proc Nat Acad Sci USA 75:1667–1669

    Article  CAS  Google Scholar 

  120. Barale R, Giromini L, Ghelardini G, Scapoli C, Loprieno N, Pala M, Valerio F, Barrai I (1991) Correlations between 15 polycyclic aromatic-hydrocarbons (PAH) and the mutagenicity of the total pah fraction in ambient air particles in La-Spezia (Italy). Mutat Res 249:227–241

    Article  CAS  Google Scholar 

  121. Busby WF Jr, Stevens EK, Kellenbach ER, Cornelisse J, Lugtenburg J (1988) Dose-response relationships of the tumorigenicity of cyclopenta[cd]pyrene, benzo[a]pyrene and 6-nitrochrysene in a newborn mouse lung adenoma bioassay. Carcinogenesis 9:741–746

    Article  CAS  Google Scholar 

  122. Kaden DA, Hites RA, Thilly WG (1979) Mutagenicity of soot and associated polycyclic aromatic hydrocarbons to Salmonella typhimurium. Cancer Res 39:4152–4159

    CAS  Google Scholar 

  123. Gonzalez-Pinuela C, Alonso-Salces RM, Andres A, Ortiz I, Viguri JR (2006) Validated analytical strategy for the determination of polycyclic aromatic compounds in marine sediments by liquid chromatography coupled with diode-array detection and mass spectrometry. J Chromatogr A 1129:189–200

    Article  CAS  Google Scholar 

  124. Anacleto JF, Ramaley L, Benoit FM, Boyd RK, Quilliam MA (1995) Comparison of liquid-chromatography mass-spectrometry interfaces for the analysis of polycyclic aromatic-compounds. Anal Chem 67:4145–4154

    Article  CAS  Google Scholar 

  125. Schubert P, Schantz MM, Sander LC, Wise SA (2003) Determination of polycyclic aromatic hydrocarbons with molecular weight 300 and 302 in environmental-matrix standard reference materials by gas chromatography/mass spectrometry. Anal Chem 75:234–246

    Article  CAS  Google Scholar 

  126. Bergvall C, Westerholm R (2008) Determination of 252-302 Da and tentative identification of 316-376 Da polycyclic aromatic hydrocarbons in Standard Reference Materials 1649a Urban Dust and 1650b and 2975 Diesel Particulate Matter by accelerated solvent extraction-HPLC-GC-MS. Anal Bioanal Chem 391:2235–2248

    Article  CAS  Google Scholar 

  127. Hayen H, Karst U (2003) Strategies for the liquid chromatographic-mass spectrometric analysis of non-polar compounds. J Chromatogr A 1000:549–565

    Article  CAS  Google Scholar 

  128. Robb DB, Blades MW (2008) State-of-the-art in atmospheric pressure photoionization for LC/MS. Anal Chim Acta 627:34–49

    Article  CAS  Google Scholar 

  129. Marchi I, Rudaz S, Veuthey JL (2009) Atmospheric pressure photoionization for coupling liquid-chromatography to mass spectrometry: A review. Talanta 78:1–18

    Article  CAS  Google Scholar 

  130. Lintelmann J, Fischer K, Karg E, Schroppel A (2005) Determination of selected polycyclic aromatic hydrocarbons and oxygenated polycyclic aromatic hydrocarbons in aerosol samples by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 381:508–519

    Article  CAS  Google Scholar 

  131. Mirivel G, Riffault V, Galloo JC (2009) Development and validation of an ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry method to quantify benzoic acid and long-chain monocarboxylic acids (C-12-C-28) in atmospheric aerosols. J Chromatogr A 1216:6481–6489

    Article  CAS  Google Scholar 

  132. Moriwaki H (2007) Liquid chromatography mass spectrometry for the analysis of environmental mutagens. Curr Anal Chem 3:69–79

    Article  CAS  Google Scholar 

  133. International Agency for Research on Cancer (1983) Polynuclear aromatic hydrocarbons, Part 1: chemical, environmental and experimental data. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  134. Osborne MR, Crosby NT (1987) Benzopyrenes. Cambridge University Press, Cambridge

    Google Scholar 

  135. Sevastyanova O, Binkova B, Topinka J, Sram RJ, Kalina I, Popov T, Novakova Z, Farmer PB (2007) In vitro genotoxicity of PAH mixtures and organic extract from urban air particles part II: human cell lines. Mutat Res 620:123–134

    Article  CAS  Google Scholar 

  136. Gutiérrez-Castillo ME, Roubicek DA, Cebrián-García ME, De Vizcaya-Ruíz A, Sordo-Cedeño M, Ostrosky-Wegman P (2006) Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. Environ Mol Mutagen 47:199–211

    Article  CAS  Google Scholar 

  137. Lewtas J, Chuang J, Nishioka M, Petersen B (1990) Bioassay-directed fractionation of the organic extract of SRM 1649 urban airborne particulate matter. J Int Environ Anal Chem 39:245–256

    Article  CAS  Google Scholar 

  138. Rosenkranz HS, Mermelstein R (1985) The mutagenic and carcinogenic properties of nitrated polycyclic aromatic hydrocarbons. In: White CM (ed) Nitrated polycyclic aromatic compounds. Huethig, Heidelberg

    Google Scholar 

  139. Tokiwa H, Ohnishi Y (1986) Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. Crit Rev Toxicol 17:23–60

    Article  CAS  Google Scholar 

  140. Busby WF Jr, Smith H, Bishop WW, Thilly WG (1994) Mutagenicity of mono- and dinitropyrenes in the Salmonella typhimurium TM677 forward mutation assays. Mutat Res 322:221–232

    Article  CAS  Google Scholar 

  141. Mermelstein R, Rosenkranz HS, McCoy EC (1980) In: Tice RR, Costa DL, Schaich KM (eds) Genotoxic effects of airborne agents. Plenum Press, New York

    Google Scholar 

  142. Tokiwa H, Nakagawa R, Ohnishi Y (1981) Mutagenic assay of aromatic nitro compounds with Salmonella typhimurium. Mutat Res 91:321–325

    Article  CAS  Google Scholar 

  143. Grosovsky AJ, Sasaki JC, Arey J, Eastmond DA, Parks KK, Atkinson R (1999) Evalution of the potential health effects of the atmospheric reaction products of polycyclic aromatic hydrocarbons. Health Effects Institute Research Report 84. Cambridge, MA

    Google Scholar 

  144. Salamone MF, Heddle JA, Katz M (1979) The mutagenic activity of thirty polycyclic aromatic hydrocarbons (PAH) and oxides in urban airborne particulates. Environ Int 2:37–43

    Article  CAS  Google Scholar 

  145. Sakai M, Yoshida D, Mizusaki S (1985) Mutagenicity of polycyclic aromatic hydrocarbons and quinones on Salmonella typhimurium TA97. Mutat Res 156:61–67

    Article  CAS  Google Scholar 

  146. Durant JL, Thilly WG, Hemond HF, Lafleur AL (1994) Identification of the principal human cell mutagen in an organic extract of a mutagenic sediment. Environ Sci Technol 28:2033–2044

    Article  CAS  Google Scholar 

  147. Dilts RV (1974) Analytical chemistry: methods of separation. D. Van Nostrand Company, New York

    Google Scholar 

  148. Iwado H, Naito M, Hayatsu H (1991) Mutagenicity and antimutagenicity of air-borne particulates. Mutat Res 246:93–102

    Article  CAS  Google Scholar 

  149. Hermann M (1981) Synergistic effects of individual polycyclic hydrocarbons on the mutagenicity of their mixtures. Mutat Res 90:399–409

    Article  CAS  Google Scholar 

  150. Brinkmann C, Eisentraeger A (2008) Completely automated short-term genotoxicity testing for the assessment of chemicals and characterisation of contaminated soils and waste waters. Environ Sci Pollut Res Int 15:211–217

    Article  CAS  Google Scholar 

  151. Hansch C, Leo A (1995) Exploring QSAR. 1. Fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  152. Benigni R (2005) Structure-activity relationship studies of chemical mutagens and carcinogens: Mechanistic investigations and prediction approaches. Chem Rev 105:1767–1800

    Article  CAS  Google Scholar 

  153. Contrera JF, Matthews EJ, Kruhlak NL, Benz RD (2005) In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software. Regul Toxicol Pharmacol 43:313–323

    Article  CAS  Google Scholar 

  154. Meinert C, Schymanski E, Kuster E, Kuhne R, Schuurmann G, Brack W (2010) Application of preparative capillary gas chromatography (pcGC), automated structure generation and mutagenicity prediction to improve effect-directed analysis of genotoxicants in a contaminated groundwater. Environ Sci Pollut Res Int 17:885–897

    Article  CAS  Google Scholar 

  155. Eide I, Neverdal G, Thorvaldsen B, Grung B, Kvalheim OM (2002) Toxicological evaluation of complex mixtures by pattern recognition: correlating chemical fingerprints to mutagenicity. Environ Health Perspect 110(Suppl 6):985–988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Durant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Durant, J.L., Lafleur, A.L. (2011). Effect-Directed Analysis of Mutagens in Ambient Airborne Particles. In: Brack, W. (eds) Effect-Directed Analysis of Complex Environmental Contamination. The Handbook of Environmental Chemistry(), vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18384-3_9

Download citation

Publish with us

Policies and ethics