Skip to main content

Considerations for Incorporating Bioavailability in Effect-Directed Analysis and Toxicity Identification Evaluation

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 15))

Abstract

In order to avoid a bias toward highly toxic but poorly bioavailable compounds in the effect-directed analysis (EDA) of soils and sediments, approaches are discussed to consider bioavailability in EDA procedures. In parallel, complimentary approaches for making toxicity identification evaluations (TIEs) more capable of performing high resolution fractionation, toxicant isolation and identification are described. These approaches focus on three processes including bioaccessibility based on desorption kinetics from the abiotic matrix, activity driven partitioning into pore water and biota tissue or a biomimetic tool, and EDA and TIE in tissues and body fluids representing toxicological bioavailability including the toxicokinetics of the selected organism. Bioaccessibility may be addressed by extraction procedures that are designed to yield rapidly desorbing fractions including mild solvent extraction, desorption into water with subsequent adsorption to a competitive adsorbent such as TENAX® or cyclodextrin, supercritical fluid extraction, or biomimetic extraction with gut fluids of potentially affected organisms. While equilibrium partitioning-based extraction procedures may simulate partitioning into biota quite well they often fail to provide sufficient amounts of toxicants for subsequent EDA and TIE. Partition-based dosing, which may be combined with bioaccessibility-directed extraction methods, provides an excellent tool to simulate partitioning in sediments and to provide constant and well-defined concentrations in bioassays. EDA studies in fish and mussel tissues as well as in fish bile demonstrate the potency of the identification of bioavailable toxicants in biota. Continued research on the described approaches promises to improve the usefulness of both EDA and TIE in future applications.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Theobald N, Lange W, Gählert W, Renner F (1995) Mass spectrometric investigations of water extracts of the river Elbe for the determination of potential inputs of pollutants into the North Sea. Fresenius J Anal Chem 353:50–56

    Article  CAS  Google Scholar 

  2. Schuetzle D, Lewtas J (1986) Bioassay-directed chemical analysis in environmental research. Anal Chem 58:1060A–1075A

    Article  CAS  Google Scholar 

  3. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures. Anal Bioanal Chem 377:397–407

    Article  CAS  Google Scholar 

  4. Bandow N, Altenburger R, Streck G, Brack W (2009) Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition. Environ Sci Technol 43:7343–7349

    Article  CAS  Google Scholar 

  5. Brack W, Bandow N, Schwab K, Schulze T, Streck G (2009) Bioavailability in effect-directed analysis of organic toxicants in sediments. Trends Analyt Chem 28:543–549

    Article  CAS  Google Scholar 

  6. Norberg-King TJ, Mount DI, Durhan EJ, Ankley GT, Burkhard LP, Amato JR, Lukasewycz MT, Schubauer-Berigan MK, Anderson-Carnahan L (1991) Methods for aquatic toxicity identification evaluations. Phase I toxicity characterization procedures (EPA/600/6-91/003). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  7. Mount DI, Anderson-Carnahan L (1989) Methods for aquatic toxicity identification evaluations. Phase II toxicity identification procedures (EPA/600/3-88/035). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  8. Mount DI, Norberg-King TJ, Ankley GT, Burkhard LP, Durhan EJ, Schubauer-Berigan MK, Lukasewycz M (1993) Methods for aquatic toxicity identification evaluations. Phase III toxicity confirmation procedures for samples exhibiting acute and chronic toxicity, vol EPA/600/R-92/081. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Duluth, MN

    Google Scholar 

  9. United States Environmental Protection Agency (2007) Sediment toxicity identification evaluation (TIE) phases I, II and III: guidance document (EPA/600/R-07/080). Office of Research and Development, Washington, DC, USA

    Google Scholar 

  10. Burgess RM, Ho KT, Biales AD, Brack W (2011) Recent developments in whole sediment toxicity identification evaluations (TIEs): innovations in manipulations and endpoints. In: Brack W (ed) Effect directed analysis of complex environmental contamination: the hand-book of environmental chemistry. Springer, Berlin

    Google Scholar 

  11. United States Environmental Protection Agency (1991) Technical support document for water quality-based toxics control, vol EPA/505/2–90–001. Office of Water, Washington, DC

    Google Scholar 

  12. Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428

    Article  CAS  Google Scholar 

  13. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    Article  CAS  Google Scholar 

  14. Cornelissen G, Gustafsson O, Bucheli TD, Jonker MTO, Koelmans AA, van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895

    Article  CAS  Google Scholar 

  15. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245

    Article  CAS  Google Scholar 

  16. Landrum PF, Dupuis WS, Kukkonen J (1994) Toxicokinetics and toxicity of sediment-associated pyrene and phenanthrene in Diporeia spp. – examination of equilibrium-partitioning theory and residue-based effects for assessing hazard. Environ Toxicol Chem 13:1769–1780

    CAS  Google Scholar 

  17. Ho KT, Burgess RM, Pelletier MC, Serbst JR, Cook H, Cantwell MG, Ryba SA, Perron MM, Lebo J, Huckins JN, Petty J (2004) Use of powdered coconut charcoal as a toxicity identification and evaluation manipulation for organic toxicants in marine sediments. Environ Toxicol Chem 23:2124–2131

    Article  CAS  Google Scholar 

  18. Ho KT, Burgess RM (2009) Marine sediment toxicity identification evaluations (TIEs): history, principles, methods, and future research. In: Kassim TA, Barcelo D (eds) Contaminated sediments, vol 5T. Springer, Heidelberg

    Chapter  Google Scholar 

  19. Burgess RM, Cantwell MG, Pelletier MC, Ho KT, Serbst JR, Cook HF, Kuhn A (2000) Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments. Environ Toxicol Chem 19:982–991

    Article  CAS  Google Scholar 

  20. Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    Article  CAS  Google Scholar 

  21. Cornelissen G, vanNoort PCM, Parsons JR, Govers HAJ (1997) Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments. Environ Sci Technol 31:454–460

    Article  CAS  Google Scholar 

  22. Kukkonen JVK, Landrum PF, Mitra S, Gossiaux DC, Gunnarsson J, Weston D (2003) Sediment characteristics affecting desorption kinetics of select PAH and PCB congeners for seven laboratory spiked sediments. Environ Sci Technol 37:4656–4663

    Article  CAS  Google Scholar 

  23. Cornelissen G, van Zuilen H, van Noort PCM (1999) Particle size dependence of slow desorption of in situ PAHs from sediments. Chemosphere 38:2369–2380

    Article  CAS  Google Scholar 

  24. Oen AMP, Breedveld GD, Kalaitzidid S, Christianis K, Cornelissen G (2006) How quality and quantity of organic matter affect polycyclic aromatic hydrocarbon desorption from Norwegian harbor sediments. Environ Toxicol Chem 25:1258–1267

    Article  CAS  Google Scholar 

  25. Cornelissen G, van der Pal M, van Noort PCM, Govers HAJ (1999) Competitive effects on the slow desorption of organic compounds from sediments. Chemosphere 39:1971–1981

    Article  CAS  Google Scholar 

  26. Liste HH, Alexander M (2002) Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere 46:1011–1017

    Article  CAS  Google Scholar 

  27. Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31:214–217

    Article  CAS  Google Scholar 

  28. Tang JX, Alexander M (1999) Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Chem 18:2711–2714

    Article  CAS  Google Scholar 

  29. Björklund E, Nilsson T, Bøwadt S, Pilorz K, Mathiasson L, Hawthorne SB (2000) Introducing selective supercritical fluid extraction as a new tool for determining sorption/desorption behavior and bioavailability of persistent organic pollutants in sediment. J Biochem Biophys Meth 43:295–311

    Article  Google Scholar 

  30. Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2002) Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction. Environ Sci Technol 36:4795–4803

    Article  CAS  Google Scholar 

  31. Jonker MTO, Hawthorne SB, Koelmans AA (2005) Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: evidence by supercritical fluid extraction. Environ Sci Technol 39:7889–7895

    Article  CAS  Google Scholar 

  32. Hawthorne SB, Grabanski CB (2000) Correlating selective supercritical fluid extraction with bioremediation behavior of PAHs in a field treatment plot. Environ Sci Technol 34:4103–4110

    Article  CAS  Google Scholar 

  33. Nilsson T, Sporring S, Bjorklund E (2003) Selective supercritical fluid extraction to estimate the fraction of PCB that is bioavailable to a benthic organism in a naturally contaminated sediment. Chemosphere 53:1049–1052

    Article  CAS  Google Scholar 

  34. Latawiec AE, Swindell AL, Reid BJ (2008) Environmentally friendly assessment of organic compound bioaccessibility using sub-critical water. Environ Pollut 156:467–473

    Article  CAS  Google Scholar 

  35. Cornelissen G, Rigterink H, Ferdinandy MMA, van Noort PCM (1998) Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ Sci Technol 32:966–970

    Article  CAS  Google Scholar 

  36. Cornelissen G, Rigterink H, ten Hulscher DEM, Vrind BA, van Noort PCM (2001) A simple Tenax extraction method to determine the availability of sediment-sorbed organic compounds. Environ Toxicol Chem 20:706–711

    Article  CAS  Google Scholar 

  37. Loehr RC, Fellow ASCE, Webster MT (2000) Decreased release of PAHs from soils as a result of field remediation. Pract Period Hazard Tox Radioact Waste Manag 4:118–125

    Article  CAS  Google Scholar 

  38. Lei L, Suidan MT, Khodadoust AP, Tabak HH (2004) Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption. Environ Sci Technol 38:1786–1793

    Article  CAS  Google Scholar 

  39. Reid BJ, Stokes JD, Jones KC, Semple KT (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34:3174–3179

    Article  CAS  Google Scholar 

  40. Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-beta-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46:1235–1245

    Article  CAS  Google Scholar 

  41. Rosende M, Miró M, Cerdà V (2010) Fluidized-bed column method for automatic dynamic extraction and determination of trace element bioaccessibility in highly heterogeneous solid wastes. Anal Chim Acta 658:41–48

    Article  CAS  Google Scholar 

  42. Swindell AL, Reid BJ (2006) Comparison of selected non-exhaustive extraction techniques to assess PAH availability in dissimilar soils. Chemosphere 62:1126–1134

    Article  CAS  Google Scholar 

  43. Kubatova A, Jansen B, Vaudoisot JF, Hawthorne SB (2002) Thermodynamic and kinetic models for the extraction of essential oil from savory and polycyclic aromatic hydrocarbons from soil with hot (subcritical) water and supercritical CO2. J Chromatogr A 975:175–188

    Article  CAS  Google Scholar 

  44. Shieh WJ, Hedges AR (1996) Properties and applications of cyclodextrins. J Macromol Sci Pure Appl Chem A33:673–683

    CAS  Google Scholar 

  45. Mayer P, Karlson U, Christensen PS, Johnsen AR, Trapp S (2005) Quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through unstirred boundary layers. Environ Sci Technol 39:6123–6129

    Article  CAS  Google Scholar 

  46. Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments: a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    Article  CAS  Google Scholar 

  47. Reid BJ, Stokes JD, Jones KC, Semple KT (2004) Influence of hydroxypropyl-ß-cyclodextrin on the extraction and biodegradation of phenanthrene in soil. Environ Toxicol Chem 23:550–556

    Article  CAS  Google Scholar 

  48. Doick KJ, Dew NM, Semple KT (2005) Linking catabolism to cyclodextrin extractability: determination of the microbial availability of PAHs in soil. Environ Sci Technol 39:8858–8864

    Article  CAS  Google Scholar 

  49. Dew NM, Paton GI, Semple KT (2005) Prediction of [3-C-14]phenyldodecane biodegradation in cable insulating oil-spiked soil using selected extraction techniques. Environ Pollut 138:316–323

    Article  CAS  Google Scholar 

  50. Rusa CC, Luca C, Tonelli AE (2001) Polymer-cyclodextrin inclusion compounds: toward new aspects of their inclusion mechanism. Macromolecules 34:1318–1322

    Article  CAS  Google Scholar 

  51. Stokes JD, Wilkinson A, Reid BJ, Jones KC, Semple KT (2005) Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique. Environ Toxicol Chem 24:1325–1330

    Article  CAS  Google Scholar 

  52. Johnsen AR, de Lipthay JR, Reichenberg F, Sorensen SJ, Andersen O, Christensen P, Binderup ML, Jacobsen CS (2006) Biodegradation, bioaccessibility, and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site. Environ Sci Technol 40:3293–3298

    Article  CAS  Google Scholar 

  53. Stroud JL, Paton GI, Semple KT (2008) Linking chemical extraction to microbial degradation of C-14-hexadecane in soil. Environ Pollut 156:474–481

    Article  CAS  Google Scholar 

  54. Fai PB, Grant A, Reid BJ (2009) Compatibility of hydroxypropyl-beta-cyclodextrin with algal toxicity bioassays. Environ Pollut 157:135–140

    Article  CAS  Google Scholar 

  55. Puglisi E, Murk AJ, van den Bergt HJ, Grotenhuis T (2007) Extraction and bioanalysis of the ecotoxicologically relevant fraction of contaminants in sediments. Environ Toxicol Chem 26:2122–2128

    Article  CAS  Google Scholar 

  56. Cornelissen G, Rigterink H, Vrind BA, tenHulscher TEM, Ferdinandy MMA, vanNoort PCM (1997) Two-stage desorption kinetics and in situ partitioning of hexachlorobenzene and dichlorobenzenes in a contaminated sediment. Chemosphere 35:2405–2416

    Article  CAS  Google Scholar 

  57. Cornelissen G, van Noort PCM, Govers HAJ (1997) Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: sediment extraction with TENAX and effects of contact time and solute hydrophobicity. Environ Toxicol Chem 16:1351–1357

    Article  CAS  Google Scholar 

  58. Greenberg MS, Burton GA, Landrum PF, Leppanen MT, Kukkonen JVK (2005) Desorption kinetics of fluoranthene and trifluralin from Lake Huron and Lake Erie, USA, sediments. Environ Toxicol Chem 24:31–39

    Article  CAS  Google Scholar 

  59. You J, Landrum PF, Lydy MJ (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40:6348–6353

    Article  CAS  Google Scholar 

  60. You I, Pehkonen S, Landrum PF, Lydy MJ (2007) Desorption of hydrophobic compounds from laboratory-spiked Sediments measured by Tenax absorbent and matrix solid-phase microextraction. Environ Sci Technol 41:5672–5678

    Article  CAS  Google Scholar 

  61. Morrison DE, Robertson BK, Alexander M (2000) Bioavailability to earthworms of aged DDT, DDE, DDD, and dieldrin in soil. Environ Sci Technol 34:709–713

    Article  CAS  Google Scholar 

  62. Macrae JD, Hall KJ (1998) Comparison of methods used to determine the availability of polycyclic aromatic hydrocarbons in marine sediment. Environ Sci Technol 32:3809–3815

    Article  CAS  Google Scholar 

  63. Landrum PF, Robinson SD, Gossiaux DC, You J, Lydy MJ, Mitra S, Ten Hulscher TEM (2007) Predicting bioavailability of sediment-associated organic contaminants for Diporeia spp. and Oligochaetes. Environ Sci Technol 41:6442–6447

    Article  CAS  Google Scholar 

  64. Schwab K, Altenburger R, Lübcke-von Varel U, Streck G, Brack W (2009) Effect-directed analysis of sediment-associated algal toxicants at selected hot spots in the river Elbe basin with a special focus on bioaccessibility. Environ Toxicol Chem 28:1506–1517

    Article  CAS  Google Scholar 

  65. Schwab K, Brack W (2007) Large volume TENAX© extraction of the bioaccessible fraction of sediment-associated organic compounds for a subsequent effect-directed analysis. J Soils Sediments 7:178–186

    Article  CAS  Google Scholar 

  66. de la Cal A, Eljarrat E, Grotenhuis T, Barcelo D (2008) Tenax (R) extraction as a tool to evaluate the availability of polybrominated diphenyl ethers, DDT, and DDT metabolites in sediments. Environ Toxicol Chem 27:1250–1256

    Article  Google Scholar 

  67. Kukkonen JVK, Landrum PF, Mitra S, Cossiaux DC, Gunnarsson J, Weston D (2004) The role of desorption for describing the bioavailability of select polycyclic aromatic hydrocarbon and polychlorinated biphenyl congeners for seven laboratory-spiked sediments. Environ Toxicol Chem 23:1842–1851

    Article  CAS  Google Scholar 

  68. Kraaij R, Seinen W, Tolls J (2002) Direct evidence of sequestration in sediments affecting the bioavailability of hydrophobic organic chemicals to benthic deposit-feeders. Environ Sci Technol 36:3525–3529

    Article  CAS  Google Scholar 

  69. Sormunen AJ, Leppanen MT, Kukkonen JVK (2008) Influence of sediment ingestion and exposure concentration on the bioavailable fraction of sediment-associated tetrachlorobiphenyl in oligochaetes. Environ Toxicol Chem 27:854–863

    Article  CAS  Google Scholar 

  70. Oen AMP, Schaanning M, Ruus A, Cornelissen G, Kallqvist T, Breedveld GD (2006) Predicting low biota to sediment accumulation factors of PAHs by using infinite-sink and equilibrium extraction methods as well as BC-inclusive modeling. Chemosphere 64:1412–1420

    Article  CAS  Google Scholar 

  71. Kraaij R, Mayer P, Busser FJM, Bolscher MV, Seinen W, Tolls J (2003) Measured pore-water concentrations make equilibrium partitioning work: a data analysis. Environ Sci Technol 37:268–274

    Article  CAS  Google Scholar 

  72. ten Hulscher TEM, Postma J, den Besten PJ, Stroomberg GJ, Belfroid A, Wegener JW, Faber JH, van der Pol JJC, Hendriks AJ, van Noort PCM (2003) Tenax extraction mimics benthic and terrestrial bioavailability of organic compounds. Environ Toxicol Chem 22:2258–2265

    Article  CAS  Google Scholar 

  73. Sormunen AJ, Koistinen J, Leppanen MT, Kukkonen JVK (2008) Desorption of sediment-associated polychlorinated dibenzo-p-dioxins, dibenzofurans, diphenyl ethers and hydroxydiphenyl ethers from contaminated sediment. Chemosphere 72:1–7

    Article  CAS  Google Scholar 

  74. Leppänen MT, Kukkonen JVK (2006) Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction. Environ Pollut 140:150–163

    Article  CAS  Google Scholar 

  75. Leppänen MT, Landrum PF, Kukkonen JVK, Greenberg MS, Burton GA, Robinson SD, Gossiaux DC (2003) Investigating the role of desorption on the bioavailability of sediment-associated TCBP in benthic invertebrates. Environ Toxicol Chem 22:2861–2871

    Article  Google Scholar 

  76. Perron MM, Burgess RM, Ho KT, Pelletier MC, Friedman CL, Cantwell MG, Shine JP (in press) Limitations of reverse polyethylene samplers (RePES) for evaluating field contaminated sediments

    Google Scholar 

  77. Weber WJ, Young TM (1997) A distributed reactivity model for sorption by soils and sediments. 6. Mechanistic implications of desorption under supercritical fluid conditions. Environ Sci Technol 31:1686–1691

    Article  CAS  Google Scholar 

  78. Björklund E, Bowadt S, Mathiasson L, Hawthorne SB (1999) Determining PCB sorption/desorption behavior on sediments using selective supercritical fluid extraction. 1. Desorption from historically contaminated samples. Environ Sci Technol 33:2193–2203

    Article  Google Scholar 

  79. Bartle KD, Clifford AA, Hawthorne SB, Langenfeld JJ, Miller DJ, Robinson R (1990) A model for dynamic extraction using a supercritical fluid. J Supercrit Fluids 3:143–149

    Article  CAS  Google Scholar 

  80. Pilorz K, Björklund E, Bøwadt S, Mathiasson L, Hawthorne SB (1999) Determining PCB sorption/desorption behavior on sediments using selective supercritical fluid extraction. 2. Describing PCB extraction with simple diffusion models. Environ Sci Technol 33:2204–2212

    Article  CAS  Google Scholar 

  81. Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2001) PAH release during water desorption, supercritical carbon dioxide extraction, and field bioremediation. Environ Sci Technol 35:4577–4583

    Article  CAS  Google Scholar 

  82. Hawthorne SB, Lanno R, Kreitinger JP (2005) Reduction in acute toxicity of soils to terrestrial oligochaetes following the removal of bioavailable polycyclic aromatic hydrocarbons with mild supercritical carbon dioxide extraction. Environ Toxicol Chem 24:1893–1895

    Article  CAS  Google Scholar 

  83. Mayer LM, Chen Z, Findlay RH, Fang J, Sampson S, Self RFL, Jumars PA, Quetél C, Donard OFX (1996) Bioavailability of sedimentary contaminants subject to deposit-feeder digestion. Environ Sci Technol 30:2641–2645

    Article  CAS  Google Scholar 

  84. Weston DP, Mayer LM (1998) In vitro digestive fluid extraction as a measure of the bioavailability of sediment-associated polycyclic aromatic hydrocarbons: sources of variation and implications for partitioning models. Environ Toxicol Chem 17:820–829

    Article  CAS  Google Scholar 

  85. Weston DP, Mayer LM (1998) Comparison of in vivo digestive fluid extraction and traditional in vivo approaches as measures of polycylic aromatic hydrocarbon bioavailability from sediments. Environ Toxicol Chem 17:830–840

    Article  CAS  Google Scholar 

  86. Voparil IM, Mayer LM (2000) Dissolution of sedimentary polycyclic aromatic hydrocarbons into the lugworm’s (Arenicola marina) digestive fluids. Environ Sci Technol 34:1221–1228

    Article  CAS  Google Scholar 

  87. Voparil IM, Mayer LM, Place AR (2003) Interactions among contaminants and nutritional lipids during mobilization by digestive fluids of marine invertebrates. Environ Sci Technol 37:3117–3122

    Article  CAS  Google Scholar 

  88. Voparil IM, Burgess RM, Mayer LM, Tien R, Cantwell MG, Ryba SA (2004) Digestive bioavailability to a deposit feeder (Arenicola marina) of polycyclic aromatic hydrocarbons associated with anthropogenic particles. Environ Toxicol Chem 23:2618–2626

    Article  CAS  Google Scholar 

  89. Weston DP, Maruya KA (2002) Predicting bioavailability and bioaccumulation with in vitro digestive fluid extraction. Environ Toxicol Chem 21:962–971

    Article  CAS  Google Scholar 

  90. Voparil JM, Mayer LM (2004) Commercially available chemicals that mimic a deposit feeder’s (Arenicola marina) digestive solubilization of lipids. Environ Sci Technol 38:4334–4339

    Article  CAS  Google Scholar 

  91. Simpson SL, Burston VL, Jolley DF, Chau K (2006) Application of surrogate methods for assessing the bioavailability of PAHs in sediments to a sediment ingesting bivalve. Chemosphere 65:2401–2410

    Article  CAS  Google Scholar 

  92. Nakajima F, Baun A, Ledin A, Mikkelsen PS (2005) A novel method for evaluating bioavailability of polycyclic aromatic hydrocarbons in sediments of an urban stream. Water Sci Technol 51:275–281

    CAS  Google Scholar 

  93. Nakajima F, Saito K, Isozaki Y, Furumai H, Christensen AM, Baun A, Ledin A, Mikkelsen PS (2006) Transfer of hydrophobic contaminants in urban runoff particles to benthic organisms estimated by an in vitro bioaccessibility test. Water Sci Technol 54:323–330

    Article  CAS  Google Scholar 

  94. Burgess RM, McKinney RA, Brown WA (1996) Enrichment of marines sediment colloids with polychlorinated biphenyls (PCBs): trends resulting from PCB solubility and chlorination. Environ Sci Technol 30:2556–2566

    Article  CAS  Google Scholar 

  95. Lee S, Gan J, Liu WP, Anderson MA (2003) Evaluation of Kd underestimation using solid phase microextraction. Environ Sci Technol 37:5597–5602

    Article  CAS  Google Scholar 

  96. Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20:533–552

    Article  CAS  Google Scholar 

  97. Lebo JA, Huckins JN, Petty JD, Ho KT, Stern EA (2000) Selective removal of organic contaminants from sediments: a methodology for toxicity identification evaluations (TIEs). Chemosphere 40:811–819

    Article  CAS  Google Scholar 

  98. Booij K, Sleiderink HM, Smedes F (1998) Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environ Toxicol Chem 17:1236–1245

    Article  CAS  Google Scholar 

  99. Adams RG, Lohmann R, Fernandez LA, MacFarlane JK (2007) Polyethylene devices: passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environ Sci Technol 41:1317–1323

    Article  CAS  Google Scholar 

  100. Vinturella AE, Burgess RM, Coull BA, Thompson KM, Shine JP (2004) Use of passive samplers to mimic uptake of polycyclic aromatic hydrocarbons by benthic polychaetes. Environ Sci Technol 38:1154–1160

    Article  CAS  Google Scholar 

  101. Friedman CL, Burgess RM, Perron MM, Cantwell MG, Ho KT, Lohmann R (2009) Comparing polychaete and polyethylene uptake to assess sediment resuspension effects on PCB bioavailability. Environ Sci Technol 43:2865–2870

    Article  CAS  Google Scholar 

  102. Arthur CL, Pawliszyn J (1990) Solid-phase microextraction with thermal-desorption using fused-silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  103. Mayer P, Vaes WHJ, Wijnker F, Legierse KCHM, Kraaij RH, Tolls J, Hermens JLM (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183

    Article  CAS  Google Scholar 

  104. Van der Wal L, Jager T, Fleuren RHLJ, Barendregt A, Sinnige TL, Van Gestel CAM, Hermens JLM (2004) Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ Sci Technol 38:4842–4848

    Article  CAS  Google Scholar 

  105. Rusina TP, Smedes F, Klanova J, Booij K, Holoubek I (2007) Polymer selection for passive sampling: a comparison of critical properties. Chemosphere 68:1344–1351

    Article  CAS  Google Scholar 

  106. Yates K, Davies I, Webster L, Pollard P, Lawton L, Moffat C (2007) Passive sampling: partition coefficients for a silicone rubber reference phase. J Environ Monit 9:1116–1121

    Article  CAS  Google Scholar 

  107. Jonker MTO, Koelmans AA (2001) Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ Sci Technol 35:3742–3748

    Article  CAS  Google Scholar 

  108. Mayer P, Wernsing J, Tolls J, de Maagd PGJ, Sijm DTHM (1999) Establishing and controlling dissolved concentrations of hydrophobic organics by partitioning from a solid phase. Environ Sci Technol 33:2284–2290

    Article  CAS  Google Scholar 

  109. Brown RS, Akhtar P, Akerman J, Hampel L, Kozin IS, Villerius LA, Klamer HJC (2001) Partition controlled delivery of hydrophobic substances in toxicity tests using poly(dimethylsiloxane) (PDMS) films. Environ Sci Technol 35:4097–4102

    Article  CAS  Google Scholar 

  110. Smith KEC, Dom N, Blust R, Mayer P (2010) Controlling and maintaining exposure of hydrophobic organic compounds in aquatic toxicity tests by passive dosing. Aquat Toxicol 98:15–24

    Article  CAS  Google Scholar 

  111. Smith KEC, Oostingh GJ, Mayer P (2010) Passive dosing for producing defined and constant exposure of hydrophobic organic compounds during in vitro toxicity tests. Chem Res Toxicol 23:55–65

    Article  CAS  Google Scholar 

  112. Birch H, Gouliarmou V, Lutzhoft HCH, Mikkelsen PS, Mayer P (2010) Passive dosing to determine the speciation of hydrophobic organic chemicals in aqueous samples. Anal Chem 82:1142–1146

    Article  CAS  Google Scholar 

  113. Heinis LJ, Highland TL, Mount DR (2004) Method for testing the aquatic toxicity of sediment extracts for use in identifying organic toxicants in sediments. Environ Sci Technol 38:6256–6262

    Article  CAS  Google Scholar 

  114. Perron MM, Burgess RM, Ho KT, Pelletier MC, Friedman CL, Cantwell MG, Shine JP (2009) Development and evaluation of reverse polyethylene samplers for marine phase II whole-sediment toxicity identification evaluations. Environ Toxicol Chem 28:749–758

    Article  CAS  Google Scholar 

  115. Kiparissis Y, Akhtar P, Hodson P, Brown RS (2003) Partition-controlled delivery of toxicants: a novel in vivo approach for embryo toxicity testing. Environ Sci Technol 37:2262–2266

    Article  CAS  Google Scholar 

  116. Bandow N, Altenburger R, Lübcke-von Varel U, Paschke A, Streck G, Brack W (2009) Partitioning-based dosing: an approach to include bioavailability in the effect-directed analysis of contaminated sediment samples. Environ Sci Technol 43:3891–3896

    Article  CAS  Google Scholar 

  117. Lübcke-von Varel U, Streck G, Brack W (2008) Automated fractionation procedure for polycyclic aromatic compounds in sediment extracts on three coupled normal-phase high-performance liquid chromatography columns. J Chromatogr A 1185:31–42

    Article  CAS  Google Scholar 

  118. Hewitt LM, Parrott JL, Wells KL, Calp MK, Biddiscombe S, McMaster ME, Munkittrick KR, Van der Kraak GJ (2000) Characteristics of ligands for the Ah receptor and sex steroid receptors in hepatic tissues of fish exposed to bleached kraft mill effluent. Environ Sci Technol 34:4327–4334

    Article  CAS  Google Scholar 

  119. Hewitt LM, Pryce AC, Parrott JL, Marlatt V, Wood C, Oakes K, Van der Kraak GJ (2003) Accumulation of ligands for aryl hydrocarbon and sex steroid receptors in fish exposed to treated effluent from a bleached sulfite/groundwood pulp and paper mill. Environ Toxicol Chem 22:2890–2897

    Article  CAS  Google Scholar 

  120. Hewitt M, Schryer R, Pryce A, Belknap A, Firth B, van der Kraak G (2005) Accumulation of hormonally active substances by wild white sucker (Catostomus commersoni) exposed to effluents discharged to the Wabigoon river. Water Qual Res J Can 40:315–327

    CAS  Google Scholar 

  121. Houtman CJ, van Oostveen AM, Brouwer A, Lamoree M, Legler J (2004) Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environ Sci Technol 38:6415–6423

    Article  CAS  Google Scholar 

  122. Donkin P, Smith EL, Rowland SJ (2003) Toxic effects of unresolved complex mixtures of aromatic hydrocarbons accumulated by mussels, Mytilus edulis, from contaminated field sites. Environ Sci Technol 37:4825–4830

    Article  CAS  Google Scholar 

  123. Ho KT, Burgess RM, Pelletier MC, Serbst JR, Ryba SA, Cantwell MG, Kuhn A, Raczelowski P (2002) An overview of toxicant identification in sediments and dredged materials. Mar Pollut Bull 44:286–293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Brack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brack, W., Burgess, R.M. (2011). Considerations for Incorporating Bioavailability in Effect-Directed Analysis and Toxicity Identification Evaluation. In: Brack, W. (eds) Effect-Directed Analysis of Complex Environmental Contamination. The Handbook of Environmental Chemistry(), vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18384-3_3

Download citation

Publish with us

Policies and ethics