Skip to main content

Part of the book series: Nonlinear Physical Science ((NPS))

  • 1693 Accesses

Abstract

Functional analytical methods are presented in this chapter to predict chaos for ODEs depending on parameters. Several types of ODEs are considered. We also study multivalued perturbations of ODEs, and coupled infinite-dimensional ODEs on the lattice ℂ as well. Moreover, the structure of bifurcation parameters for homoclinic orbits is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. BATTELLI & C. LAZZARI: Exponential dichotomies, heteroclinic orbits, and Melnikov functions, J. Differential Equations 86 (1990), 342–366.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. CHACÓN: Control of Homoclinic Chaos by Weak Periodic Perturbations, World Scientific Publishing Co., Singapore, 2005.

    MATH  Google Scholar 

  3. J. GRUENDLER: Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations, J. Differential Equations 122 (1995), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. GRUENDLER: The existence of transverse homoclinic solutions for higher order equations, J. Differential Equations 130 (1996), 307–320.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. GRUENDLER: Homoclinic solutions for autonomous dynamical systems in arbitrary dimensions, SIAM J. Math. Anal. 23 (1992), 702–721.

    Article  MathSciNet  MATH  Google Scholar 

  6. A.C.J. LUO: Global Transversality, Resonance and Chaotic Dynamics, World Scientific Publishing Co., Singapore, 2008.

    Book  MATH  Google Scholar 

  7. K.J. PALMER: Exponential dichotomies and transversal homoclinic points, J. Differential Equations 55 (1984), 225–256.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. TABOR: Chaos and Integrability in Nonlinear Dynamics: An Introduction, Willey-Interscience, New York, 1989.

    MATH  Google Scholar 

  9. M. FEČKAN: Topological Degree Approach to Bifurcation Problems, Springer, 2008.

    Google Scholar 

  10. C. CHICONE: Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators, J. Differential Equations 112 (1994), 407–447.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. CODDINGTON & N. LEVINSON: Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  12. M. FARKAS: Periodic Motions, Springer-Verlag, New York, 1994.

    Book  MATH  Google Scholar 

  13. J.K. HALE: Ordinary Differential Equations, 2nd ed., Robert E. Krieger, New York, 1980.

    MATH  Google Scholar 

  14. F. BATTELLI: Perturbing diffeomorphisms which have heteroclinic orbits with semihyperbolic fixed points, Dyn. Sys. Appl. 3 (1994), 305–332.

    MathSciNet  MATH  Google Scholar 

  15. A. DOELMAN & G. HEK: Homoclinic saddle-node bifurcations in singularly perturbed systems, J. Dynamics Differential Equations 12 (2000), 169–216.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. J.A. SANDERS, F. VERHULST & J. MURDOCK: Averaging Methods in Nonlinear Dynamical Systems, 2nd ed., Springer, 2007.

    Google Scholar 

  17. A.N. TIKHONOV: Systems of differential equations containing small parameters multiplying some of the derivatives, Mat. Sb. 31 (1952), 575–586.

    Google Scholar 

  18. F.C. HOPPENSTEADT: Singular perturbations on the infinite interval, Trans. Amer. Math. Soc. 123 (1966), 521–535.

    Article  MathSciNet  MATH  Google Scholar 

  19. F.C. HOPPENSTEADT: Properties of solutions of ordinary differential equations with small parameters, Comm. Pure Appl. Math. 24 (1971), 807–840.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. FENICHEL: Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), 53–98.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. FLATTO & N. LEVINSON: Periodic solutions to singularly perturbed systems, J. Ration. Mech. Anal. 4 (1955), 943–950.

    MathSciNet  MATH  Google Scholar 

  22. P. SZMOLYAN: Heteroclinic Orbits in Singularly Perturbed Differential Equations, IMA preprint 576.

    Google Scholar 

  23. P. SZMOLYAN: Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Differential Equations 92 (1991), 252–281.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. BATTELLI & C. LAZZARI: Bounded solutions to singularly perturbed systems of O.D.E., J. Differential Equations 100 (1992), 49–81.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. FEČKAN: Melnikov functions for singularly perturbed ordinary differential equations, Nonlin. Anal., Th. Meth. Appl. 19 (1992), 393–401.

    Article  MATH  Google Scholar 

  26. K. NIPP: Smooth attractive invariant manifolds of singularly perturbed ODE’s, SAM-ETH 92-13 (1992).

    Google Scholar 

  27. V.V. STRYGIN & V.A. SOBOLEV: Separation of Motions by the Method of Integral Manifolds, Nauka, Moscow, 1988, (in Russian).

    MATH  Google Scholar 

  28. F. BATTELLI & M. FEČKAN: Global center manifolds in singular systems, NoDEA: Nonl. Diff. Eqns. Appl. 3 (1996), 19–34.

    Article  Google Scholar 

  29. M. FEČKAN & J. GRUENDLER: Transversal bounded solutions in systems with normal and slow variables, J. Differential Equation 165 (2000), 123–142.

    Article  MATH  Google Scholar 

  30. M. FEČKAN: Transversal homoclinics in nonlinear systems of ordinary differential equations, in: “Proc. 6th Coll. Qual. Th. Differential Equations”, Szeged, 1999, Electr. J. Qual. Th. Differential Equations 9 (2000), 1–8.

    Google Scholar 

  31. M. FEČKAN: Bifurcation of multi-bump homoclinics in systems with normal and slow variables, Electr. J. Differential Equations 2000 (2000), 1–17.

    Google Scholar 

  32. F. BATTELLI: Heteroclinic orbits in singular systems: a unifying approach, J. Dyn. Diff. Eqns. 6 (1994), 147–173.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. KOVAČIČ: Singular perturbation theory for homoclinic orbits in a class of nearintegrable dissipative systems, SIAM J. Math. Anal. 26 (1995), 1611–1643.

    Article  MathSciNet  MATH  Google Scholar 

  34. X.-B. LIN: Homoclinic bifurcations with weakly expanding center manifolds, Dynamics Reported 5 (1995), 99–189.

    Article  Google Scholar 

  35. S. WIGGINS: Global Bifurcations and Chaos, Analytical Methods, Springer-Verlag, New York, 1988.

    Book  MATH  Google Scholar 

  36. S. WIGGINS & P. HOLMES: Homoclinic orbits in slowly varying oscillators, SIAM J. Math. Anal. 18 (1987), 612–629. Erratum: SIAM J. Math. Anal. 19 (1988), 1254–1255.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. D. ZHU: Exponential trichotomy and heteroclinic bifurcations, Nonlin. Anal. Th. Meth. Appl. 28 (1997), 547–557.

    Article  MATH  Google Scholar 

  38. M. CARTMELL: Introduction to Linear, Parametric and Nonlinear Vibrations, Chapman & Hall, London, 1990.

    MATH  Google Scholar 

  39. M. RUIJGROK, A. TONDL & F. VERHULST: Resonance in a rigid rotor with elastic support, Z. Angew. Math. Mech. (ZAMM) 73 (1993), 255–263.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. RUIJGROK & F. VERHULST: Parametric and autoparametric resonance, Nonlinear Dynamical Systems and Chaos, Birkauser, Basel, (1996), 279–298.

    Chapter  Google Scholar 

  41. J.E. MARSDEN & M. MCCRACKEN: The Hopf Bifurcation and Its Applications, Springer, New York, 1976.

    Book  MATH  Google Scholar 

  42. M. FEČKAN & J. GRUENDLER: Homoclinic-Hopf interaction: an autoparametric bifurcation, Proc. Royal Soc. Edinburgh A 130 A (2000), 999–1015.

    Article  Google Scholar 

  43. B. DENG & K. SAKAMATO: Šil’nikov-Hopf bifurcations, J. Differential Equations 119 (1995), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. VANDERBAUWHEDE: Bifurcation of degenerate homoclinics, Results in Mathematics 21 (1992), 211–223.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. GOLUBITSKY & V. GUILLEMIN: Stable Mappings and Their Singularities, Springer, New York, 1973.

    Book  MATH  Google Scholar 

  46. J. KNOBLOCH & U. SCHALK: Homoclinic points near degenerate homoclinics, Nonlinearity 8 (1995), 1133–1141.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. K.J. PALMER: Existence of a transversal homoclinic point in a degenerate case, Rocky Mountain J. Math. 20 (1990), 1099–1118.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. KNOBLOCH, B. MARX & M. EL MORSALANI: Characterization of Homoclinic Points Bifurcating from Degenerate Homoclinic Orbits, preprint, 1997.

    Google Scholar 

  49. B. MORIN: Formes canoniques des singularities d’une application différentiable, Comptes Rendus Acad. Sci., Paris 260 (1965), 5662–5665, 6503–6506.

    MathSciNet  MATH  Google Scholar 

  50. F. BATTELLI & K.J. PALMER: Tangencies between stable and unstable manifolds, Proc. Royal Soc. Edinburgh 121 A (1992), 73–90.

    Article  MathSciNet  Google Scholar 

  51. B. AULBACH & T. WANNER: The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spacs, Nonlin. Anal., Th. Meth. Appl. 40 (2000), 91–104.

    Article  MathSciNet  MATH  Google Scholar 

  52. B. AULBACH & T. WANNER: Integral manifolds for Carathéodory-type differential equations in Banach spacs, in: “Six Lectures on Dynamical System”, B. Aulbach, F. Colonius, Eds., World Scientific Publishing Co., Singapore, 1996, 45–119.

    Chapter  Google Scholar 

  53. G. COLOMBO, M. FEČKAN & B.M. GARAY: Multivalued perturbations of a saddle dynamics, Differential Equations & Dynamical Systems 18 (2010), 29–56.

    Article  MATH  Google Scholar 

  54. F. BATTELLI & FEČKAN, Chaos arising near a topologically transversal homoclinic set, Top. Meth. Nonl. Anal. 20 (2002), 195–215.

    MATH  Google Scholar 

  55. K.J. PALMER: Shadowing in Dynamical Systems, Theory and Applications, Kluwer Academic Publishers, Dordrecht, 2000.

    Book  MATH  Google Scholar 

  56. J.L. DALECKII & M.G. KREIN: Stability of Differential Equations, Nauka, Moscow, 1970, (in Russian).

    Google Scholar 

  57. A.M. SAMOILENKO & YU.V. TEPLINSKIJ: Countable Systems of Differential Equations, Brill Academic Publishers, Utrecht 2003.

    Book  MATH  Google Scholar 

  58. M. PEYRARD, ST. PNEVMATIKOS & N. FLYTZANIS: Dynamics of two-component solitary waves in hydrogen-bounded chains, Phys. Rev. A 36 (1987), 903–914.

    Article  ADS  Google Scholar 

  59. ST. PNEVMATIKOS, N. FLYTZANIS & M. REMOISSENET: Soliton dynamics of nonlinear diatomic lattices, Phys. Rev. B 33 (1986), 2308–2321.

    Article  ADS  Google Scholar 

  60. R.B. TEW & J.A.D. WATTIS: Quasi-continuum approximations for travelling kinks in diatomic lattices, J. Phys. A: Math. Gen. 34, (2001), 7163–7180.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. J.A.D. WATTIS: Solitary waves in a diatomic lattice: analytic approximations for a wide range of speeds by quasi-continuum methods, Phys. Lett. A 284 (2001), 16–22.

    Article  ADS  MATH  Google Scholar 

  62. S. AUBRY, G. KOPIDAKIS & V. KADELBURG: Variational proof for hard discrete breathers in some classes of Hamiltonian dynamical systems, Discr. Cont. Dyn. Syst. B 1 (2001), 271–298.

    Article  MathSciNet  MATH  Google Scholar 

  63. D. BAMBUSI & D. VELLA: Quasiperiodic breathers in Hamiltonian lattices with symmetries, Discr. Cont. Dyn. Syst. B 2 (2002), 389–399.

    Article  MathSciNet  MATH  Google Scholar 

  64. M. FEČKAN: Blue sky catastrophes in weakly coupled chains of reversible oscillators, Disc. Cont. Dyn. Syst. B 3, (2003), 193–200.

    Article  MATH  Google Scholar 

  65. M. HASKINS & J.M. SPEIGHT: Breather initial profiles in chains of weakly coupled anharmonic oscillators, Phys. Lett. A 299 (2002), 549–557.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. M. HASKINS & J.M. SPEIGHT: Breathers in the weakly coupled topological discrete sine-Gordon system, Nonlinearity 11 (1998), 1651–1671.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. R.S. MACKAY & S. AUBRY: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity 7 (1994), 1623–1643.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. J.A. SEPULCHRE & R.S. MACKAY: Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators, Nonlinearity 10 (1997), 679–713.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fečkan, M. (2011). Chaos in Ordinary Differential Equations. In: Bifurcation and Chaos in Discontinuous and Continuous Systems. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18269-3_4

Download citation

Publish with us

Policies and ethics