Skip to main content

The Role of Hypoxia and Hyperthermia in Chemotherapy

  • Chapter
  • First Online:
  • 732 Accesses

Abstract

Tumor hypoxia is the condition where cancer cells have been deprived of oxygen. As a tumor grows, it rapidly outgrows its blood supply, leaving portions of the tumor with regions where the oxygen concentration is significantly lower than in healthy tissues. Hypoxic tumor cells are usually resistant to chemotherapy and radiotherapy, but they can be made more susceptible to treatment by increasing the amount of oxygen in them. Cancer physiology can be a new significant target for therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gray LH, Conger AD, Ebert M, et al. Concentration of oxygen dissolved in tissue at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26:638–48.

    Article  PubMed  CAS  Google Scholar 

  2. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.

    Article  PubMed  CAS  Google Scholar 

  3. Moulder JE, Rockwell S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev. 1987;5:313–41.

    Article  PubMed  CAS  Google Scholar 

  4. Brown JM. The hypoxic cell: a target for selective cancer therapy. Cancer Res. 1999;59:5863–70.

    PubMed  CAS  Google Scholar 

  5. Rauth AM, Melo T, Misra V. Bioreductive therapies: an overview of drugs and their mechanism of action. Int J Radiat Oncol Biol Phys. 1998;42:755–62.

    Article  PubMed  CAS  Google Scholar 

  6. Wouters BG, Wang LH, Brown JM. Tirapazamine: a new drug producing tumor specific enhancement of platinum-based chemotherapy in non small cell lung cancer. Ann Oncol. 1999;10 Suppl 5:S29–33.

    Article  PubMed  Google Scholar 

  7. Graeber TG, Osmanian C, Jacks T. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379:88–91.

    Article  PubMed  CAS  Google Scholar 

  8. Lin A, Cosby L, Shansky C, et al. Potential bioreductive alkylating agents. 1. Benzoquinone derivatives. J Med Chem. 1972;15:1247–52.

    Article  PubMed  CAS  Google Scholar 

  9. Adams GE, Stratford IJ. Bioreductive drugs for cancer therapy: the search for tumour specificity. Int J Radiat Oncol Biol Phys. 1994;29:231–8.

    Article  PubMed  CAS  Google Scholar 

  10. Teicher BA, Holden SA, Al-Achi A, et al. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulation in vivo in the FSalIC murine fibrosarcoma. Cancer Res. 1990;50:3339–44.

    PubMed  CAS  Google Scholar 

  11. Binley L, Iqball S, Kingsman S, et al. An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Gene Ther. 1999;6:1721–7.

    Article  PubMed  CAS  Google Scholar 

  12. Zaffaroni N, Fiorentini G, De Giorgi U. Hyperthermia and hypoxia: new developments in anticancer chemotherapy. Eur J Surg Oncol. 2001;27:340–2.

    Article  PubMed  CAS  Google Scholar 

  13. Guadagni S, Fiorentini G, Palumbo G, et al. Hypoxic pelvic perfusion with mitomycin C using a simplified balloon-occlusion technique in the treatment of patients with unresectable locally recurrent rectal cancer. Arch Surg. 2001;136(1):105–12.

    Article  PubMed  CAS  Google Scholar 

  14. Guadagni S, Russo F, Rossi CR, et al. Deliberate hypoxic pelvic and limb chemoperfusion in the treatment of recurrent melanoma. Am J Surg. 2002;183:28–36.

    Article  PubMed  Google Scholar 

  15. Semenza GI. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  PubMed  CAS  Google Scholar 

  16. Brown JM, Giacca AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58:1408–16.

    PubMed  CAS  Google Scholar 

  17. Urano M, Kuroda M, Nishimura Y. For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia. 1999;15:79–107.

    Article  PubMed  CAS  Google Scholar 

  18. Zaffaroni N, Villa R, Daidone MG, Vaglini M, Santinami M, Silvestrini R. Antitumor activity of hyperthermia alone or in combination with cisplatin and melphalan in primary cultures of human malignant melanoma. Int J Cell Cloning. 1989;7:385–94.

    Article  PubMed  CAS  Google Scholar 

  19. Kusumoto T, Holden SA, Ara G, Teicher BA. Hyperthermia and platinum complexes: time between treatments and synergy in vitro and in vivo. Int J Hyperthermia. 1995;11:575–86.

    Article  PubMed  CAS  Google Scholar 

  20. Bates DA, Mackillop WJ. Effect of hyperthermia on the uptake and cytotoxicity of melphalan in Chinese hamster ovary cells. Int J Radiat Oncol Biol Phys. 1998;16:187–91.

    Article  Google Scholar 

  21. Zaffaroni N, Villa R, Orlandi L, Vaglini M, Silvestrini R. Effect of hyperthermia on the formation and removal of DNA interstrand cross-links induced by melphalan in primary cultures of human malignant melanoma. Int J Hyperthermia. 1992;8:341–9.

    Article  PubMed  CAS  Google Scholar 

  22. Orlandi L, Zaffaroni N, Bearzatto A, Costa A, Supino R, Vaglini M, et al. Effect of melphalan and hyperthermia on cell cycle progression and cyclin B1 expression in human melanoma cells. Cell Prolif. 1995;28:617–30.

    Article  PubMed  CAS  Google Scholar 

  23. Orlandi L, Zaffaroni N, Bearzatto A, Silvestrini R. Effect of melphalan and hyperthermia on p34cdc2 kinase activity in human melanoma cells. Br J Cancer. 1996;74:1924–8.

    Article  PubMed  CAS  Google Scholar 

  24. Rietbroek RC, van de Vaart PJ, Haveman J, Blommaert FA, Geerdink A, Bakker PJ, et al. Hyperthermia enhances the cytotoxic activity and platinum-DNA adduct formation of lobaplatin and oxaliplatin in cultured SW 1573 cells. J Cancer Res Clin Oncol. 1997;123:6–12.

    Article  PubMed  CAS  Google Scholar 

  25. Orlandi L, Costa A, Zaffaroni N, Villa R, Vaglini M, Silvestrini R. Relevance of cell kinetic and ploidy characteristics for the thermal response of malignant melanoma primary cultures. Int J Oncol. 1993;2:523–6.

    PubMed  CAS  Google Scholar 

  26. Richards EH, Hickman JA, Masters JR. Heat shock protein expression in testis and bladder cancer cell lines exhibiting differential sensitivity to heat. Br J Cancer. 1995;72:620–6.

    Article  PubMed  CAS  Google Scholar 

  27. Takemoto M, Kuroda M, Urano M, Nishimura Y, Kawasaki S, Kato H, et al. Effect of various chemotherapeutic agents given with mild hyperthermia on different types of tumours. Int J Hyperthermia. 2003;19(2):193–203.

    Article  PubMed  CAS  Google Scholar 

  28. Urano M, Ling CC. Thermal enhancement of melphalan and oxaliplatin cytotoxicity in vitro. Int J Hyperthermia. 2002;18(4):307–15.

    Article  PubMed  CAS  Google Scholar 

  29. Mohamed F, Stuart OA, Glehen O, Urano M, Sugarbaker PH. Docetaxel and hyperthermia: factors that modify thermal enhancement. J Surg Oncol. 2004;88(1):14–20.

    Article  PubMed  CAS  Google Scholar 

  30. Li GC, He F, Shao X, Urano M, Shen L, Kim D, et al. Adenovirus-mediated heat-activated antisense Ku70 expression radiosensitizes tumor cells in vitro and in vivo. Cancer Res. 2003;63(12):3268–74.

    PubMed  CAS  Google Scholar 

  31. Guan YS, Liu Y, Zou Q, He Q, La Z, Yang L, et al. Adenovirus-mediated wild-type p53 gene transfer in combination with bronchial arterial infusion for treatment of advanced non-­small-cell lung cancer, one year follow-up. J Zhejiang Univ Sci B. 2009;10(5):331–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giammaria Fiorentini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiorentini, G., Cantore, M., Montagnani, F., Mambrini, A., D’Alessandro, M., Guadagni, S. (2011). The Role of Hypoxia and Hyperthermia in Chemotherapy. In: Aigner, K., Stephens, F. (eds) Induction Chemotherapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18173-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18173-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18172-6

  • Online ISBN: 978-3-642-18173-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics