Skip to main content

Models for heavy-tailed asset returns

  • Chapter
  • First Online:
Statistical Tools for Finance and Insurance

Abstract

Many of the concepts in theoretical and empirical finance developed over the past decades – including the classical portfolio theory, the Black-Scholes-Merton option pricing model or the RiskMetrics variance-covariance approach to Value at Risk (VaR) – rest upon the assumption that asset returns follow a normal distribution. But this assumption is not justified by empirical data! Rather, the empirical observations exhibit excess kurtosis, more colloquially known as fat tails or heavy tails (Guillaume et al., 1997; Rachev and Mittnik, 2000). The contrast with the Gaussian law can be striking, as in Figure 1.1 where we illustrate this phenomenon using a ten-year history of the Dow Jones Industrial Average (DJIA) index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Atkinson, A. C. (1982). The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM Journal of Scientific & Statistical Computing 3: 502–515.

    Article  MATH  Google Scholar 

  • Barndorff-Nielsen, O. E. (1977). Exponentially decreasing distributions for the logarithm of particle size, Proceedings of the Royal Society London A 353: 401–419.

    Article  Google Scholar 

  • Barndorff-Nielsen, O. E. (1995). Normal\\Inverse Gaussian Processes and the Modelling of Stock Returns, Research Report 300, Department of Theoretical Statistics, University of Aarhus.

    Google Scholar 

  • Barndorff-Nielsen, O. E. and Blaesild, P. (1981). Hyperbolic distributions and ramifications: Contributions to theory and applications, in C. Taillie, G. Patil, B. Baldessari (eds.) Statistical Distributions in Scientific Work, Volume 4, Reidel, Dordrecht, pp. 19–44.

    Google Scholar 

  • Barone-Adesi, G., Giannopoulos, K., and Vosper, L., (1999). VaR without correlations for portfolios of derivative securities, Journal of Futures Markets 19(5): 583–602.

    Article  Google Scholar 

  • Basle Committee on Banking Supervision (1995). An internal model-based approach to market risk capital requirements, http://www.bis.org.

  • Bianchi, M. L., Rachev, S. T., Kim, Y. S. and Fabozzi, F. J. (2010). Tempered stable distributions and processes in finance: Numerical analysis, in M. Corazza, P. Claudio, P. (Eds.) Mathematical and Statistical Methods for Actuarial Sciences and Finance, Springer.

    Google Scholar 

  • Bibby, B. M. and Sørensen, M. (2003). Hyperbolic processes in finance, in S. T. Rachev (ed.) Handbook of Heavy-tailed Distributions in Finance, North Holland.

    Google Scholar 

  • Blaesild, P. and Sorensen, M. (1992). HYP – a Computer Program for Analyzing Data by Means of the Hyperbolic Distribution, Research Report 248, Department of Theoretical Statistics, Aarhus University.

    Google Scholar 

  • Boyarchenko, S. I. and Levendorskii, S. Z. (2000). Option pricing for truncated L´evy processes, International Journal of Theoretical and Applied Finance 3: 549–552.

    Article  MATH  Google Scholar 

  • Brcich, R. F., Iskander, D. R. and Zoubir, A. M. (2005). The stability test for symmetric alpha stable distributions, IEEE Transactions on Signal Processing 53: 977–986.

    Article  MathSciNet  Google Scholar 

  • Buckle, D. J. (1995). Bayesian inference for stable distributions, Journal of the American Statistical Association 90: 605–613.

    Article  MATH  MathSciNet  Google Scholar 

  • Carr, P., Geman, H., Madan, D. B. and Yor, M. (2002). The fine structure of asset returns: an empirical investigation, Journal of Business 75: 305–332.

    Article  Google Scholar 

  • Chambers, J. M., Mallows, C. L. and Stuck, B. W. (1976). A Method for Simulating Stable Random Variables, Journal of the American Statistical Association 71: 340–344.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, Y., H¨ardle, W. and Jeong, S.-O. (2008). Nonparametric risk management with generalized hyperbolic distributions, Journal of the American Statistical Association 103: 910–923.

    Google Scholar 

  • Cont, R., Potters, M. and Bouchaud, J.-P. (1997). Scaling in stock market data: Stable laws and beyond, in B. Dubrulle, F. Graner, D. Sornette (eds.) Scale Invariance and Beyond, Proceedings of the CNRS Workshop on Scale Invariance, Springer, Berlin.

    Google Scholar 

  • D’Agostino, R. B. and Stephens, M. A. (1986). Goodness-of-Fit Techniques, Marcel Dekker, New York.

    Google Scholar 

  • Dagpunar, J. S. (1989). An Easily Implemented Generalized Inverse Gaussian Generator, Communications in Statistics – Simulations 18: 703–710.

    Google Scholar 

  • Danielsson, J., Hartmann, P. and De Vries, C. G. (1998). The cost of conservatism: Extreme returns, value at risk and the Basle multiplication factor, Risk 11: 101–103.

    Google Scholar 

  • Dominicy, Y. and Veredas, D. (2010). The method of simulated quantiles, ECARES working paper, 2010–008.

    Google Scholar 

  • DuMouchel, W. H. (1971). Stable Distributions in Statistical Inference, Ph.D. Thesis, Department of Statistics, Yale University.

    Google Scholar 

  • DuMouchel, W. H. (1973). On the Asymptotic Normality of the Maximum– Likelihood Estimate when Sampling from a Stable Distribution, Annals of Statistics 1(5): 948–957.

    Article  MATH  MathSciNet  Google Scholar 

  • Eberlein, E. and Keller, U. (1995). Hyperbolic distributions in finance, Bernoulli 1: 281–299.

    Article  MATH  Google Scholar 

  • Fama, E. F. and Roll, R. (1971). Parameter Estimates for Symmetric Stable Distributions, Journal of the American Statistical Association 66: 331– 338.

    Article  MATH  Google Scholar 

  • Fan, Z. (2006). Parameter estimation of stable distributions, Communications in Statistics – Theory and Methods 35(2): 245–255.

    Google Scholar 

  • Fragiadakis, K., Karlis, D. and Meintanis, S. G. (2009). Tests of fit for normal inverse Gaussian distributions, Statistical Methodology 6: 553–564.

    Article  Google Scholar 

  • Garcia, R., Renault, E. and Veredas, D. (2010). Estimation of stable distributions by indirect inference, Journal of Econometrics, Forthcoming.

    Google Scholar 

  • Grabchak, M. (2010). Maximum likelihood estimation of parametric tempered stable distributions on the real line with applications to finance, Ph.D. thesis, Cornell University.

    Google Scholar 

  • Grabchak, M. and Samorodnitsky, G. (2010). Do financial returns have finite or infinite variance? A paradox and an explanation, Quantitative Finance,10.1080/14697680903540381.

    MATH  Google Scholar 

  • Guillaume, D. M., Dacorogna, M. M., Dave, R. R., M¨uller, U. A., Olsen, R. B. and Pictet, O. V. (1997). From the birds eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets, Finance & Stochastics 1: 95–129.

    Article  MATH  Google Scholar 

  • Janicki, A. and Weron, A. (1994a). Can one see α-stable variables and processes, Statistical Science 9: 109–126. Janicki, A. and Weron, A. (1994b). Simulation and Chaotic Behavior of α- Stable Stochastic Processes, Marcel Dekker.

    Google Scholar 

  • Karlis, D. (2002). An EM type algorithm for maximum likelihood estimation for the Normal Inverse Gaussian distribution, Statistics and Probability Letters 57: 43–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Karlis, D. and Lillest¨ol, J. (2004). Bayesian estimation of NIG models via Markov chain Monte Carlo methods, Applied Stochastic Models in Business and Industry 20(4): 323–338.

    Article  MATH  MathSciNet  Google Scholar 

  • Kawai, R. and Masuda, H. (2010). On simulation of tempered stable random variates, Preprint, Kyushu University.

    Google Scholar 

  • Kogon, S. M. and Williams, D. B. (1998). Characteristic function based estimation of stable parameters, in R. Adler, R. Feldman, M. Taqqu (eds.), A Practical Guide to Heavy Tails, Birkhauser, pp. 311–335.

    Google Scholar 

  • Koponen, I. (1995). Analytic approach to the problem of convergence of truncated Levy flights towards the Gaussian stochastic process, Physical Review E 52: 1197–1199.

    Article  Google Scholar 

  • Koutrouvelis, I. A. (1980). Regression–Type Estimation of the Parameters of Stable Laws, Journal of the American Statistical Association 75: 918–928.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuester, K., Mittnik, S., and Paolella, M.S. (2006). Value-at-Risk prediction: A comparison of alternative strategies, Journal of Financial Econometrics 4(1): 53–89.

    Article  Google Scholar 

  • K¨uchler, U., Neumann, K., Sørensen, M. and Streller, A. (1999). Stock returns and hyperbolic distributions, Mathematical and Computer Modelling 29: 1–15.

    Google Scholar 

  • Lombardi, M. J. (2007). Bayesian inference for α-stable distributions: A random walk MCMC approach, Computational Statistics and Data Analysis 51(5): 2688–2700.

    Article  MATH  MathSciNet  Google Scholar 

  • Madan, D. B. and Seneta, E. (1990). The variance gamma (V.G.) model for share market returns, Journal of Business 63: 511–524.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1963). The variation of certain speculative prices, Journal of Business 36: 394–419.

    Article  Google Scholar 

  • Mantegna, R. N. and Stanley, H. E. (1994). Stochastic processes with ultraslow convergence to a Gaussian: The truncated L´evy flight, Physical Review Letters 73: 2946–2949.

    Article  MATH  MathSciNet  Google Scholar 

  • Matacz, A. (2000). Financial Modeling and Option Theory with the Truncated L´evy Process, International Journal of Theoretical and Applied Finance 3(1): 143–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Matsui, M. and Takemura, A. (2006). Some improvements in numerical evaluation of symmetric stable density and its derivatives, Communications in Statistics – Theory and Methods 35(1): 149–172.

    Google Scholar 

  • Matsui, M. and Takemura, A. (2008). Goodness-of-fit tests for symmetric stable distributions – empirical characteristic function approach, TEST 17(3): 546–566.

    Article  MATH  MathSciNet  Google Scholar 

  • McCulloch, J. H. (1986). Simple consistent estimators of stable distribution parameters, Communications in Statistics – Simulations 15: 1109–1136

    Google Scholar 

  • McNeil, A. J., R¨udiger, F. and Embrechts, P. (2005). Quantitative Risk Management, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Michael, J. R., Schucany, W. R. and Haas, R. W. (1976). Generating Random Variates Using Transformations with Multiple Roots, The American Statistician 30: 88–90.

    Article  MATH  Google Scholar 

  • Mittnik, S., Doganoglu, T. and Chenyao, D. (1999). Computing the Probability Density Function of the Stable Paretian Distribution, Mathematical and Computer Modelling 29: 235–240.

    Article  MATH  MathSciNet  Google Scholar 

  • Mittnik, S. and Paolella, M. S. (1999). A simple estimator for the characteristic exponent of the stable Paretian distribution, Mathematical and Computer Modelling 29: 161–176.

    Article  MATH  MathSciNet  Google Scholar 

  • Mittnik, S., Rachev, S. T., Doganoglu, T. and Chenyao, D. (1999). Maximum Likelihood Estimation of Stable Paretian Models, Mathematical and Computer Modelling 29: 275–293.

    Article  MATH  MathSciNet  Google Scholar 

  • Nolan, J. P. (1997). Numerical Calculation of Stable Densities and Distribution Functions, Communications in Statistics – Stochastic Models 13: 759–774.

    Google Scholar 

  • Nolan, J. P. (2001). Maximum Likelihood Estimation and Diagnostics for Stable Distributions, in O. E. Barndorff-Nielsen, T. Mikosch, S. Resnick (eds.), L´evy Processes, Brikh¨auser, Boston.

    Google Scholar 

  • Nolan, J. P. (2010). Stable Distributions – Models for Heavy Tailed Data, Birkh¨auser, Boston. In progress, Chapter 1 online at academic2.american.edu/jpnolan.

    Google Scholar 

  • Ojeda, D. (2001). Comparison of stable estimators, Ph.D. Thesis, Department of Mathematics and Statistics, American University.

    Google Scholar 

  • Paolella, M. S. (2001). Testing the stable Paretian assumption, Mathematical and Computer Modelling 34: 1095–1112.

    Article  MATH  MathSciNet  Google Scholar 

  • Paolella, M. S. (2007). Intermediate Probability: A Computational Approach, Wiley, Chichester.

    Google Scholar 

  • Peters, G. W., Sisson, S. A. and Fan, Y. (2009). Likelihood-free Bayesian inference for α-stable models, Preprint: http://arxiv.org/abs/0912.4729.

  • Poirot, J. and Tankov, P. (2006). Monte Carlo option pricing for tempered stable (CGMY) processes, Asia-Pacific Financial Markets 13(4): 327-344.

    Article  MATH  Google Scholar 

  • Prause, K. (1999). The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures, Ph.D. Thesis, Freiburg University, http://www.freidok.uni-freiburg.de/volltexte/15.

  • Press, S. J. (1972). Estimation in Univariate and Multivariate Stable Distribution, Journal of the American Statistical Association 67: 842–846.

    Article  MATH  MathSciNet  Google Scholar 

  • Protassov, R. S. (2004). EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed λ, Statistics and Computing 14: 67–77.

    Article  MathSciNet  Google Scholar 

  • Rachev, S. and Mittnik, S. (2000). Stable Paretian Models in Finance, Wiley.

    Google Scholar 

  • Rosinski, J. (2007). Tempering stable processes, Stochastic Processes and Their Applications 117(6): 677–707.

    Article  MATH  MathSciNet  Google Scholar 

  • Ross, S. (2002). Simulation, Academic Press, San Diego.

    Google Scholar 

  • Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non–Gaussian Random Processes, Chapman & Hall.

    Google Scholar 

  • Shuster, J. (1968). On the Inverse Gaussian Distribution Function, Journal of the American Statistical Association 63: 1514–1516.

    Article  MATH  MathSciNet  Google Scholar 

  • Stahl, G. (1997). Three cheers, Risk 10: 67–69.

    Google Scholar 

  • Stute, W., Manteiga, W. G. and Quindimil, M.P. (1993). Bootstrap Based Goodness-Of-Fit-Tests, Metrika 40: 243–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Venter, J. H. and de Jongh, P. J. (2002). Risk estimation using the Normal Inverse Gaussian distribution, The Journal of Risk 4: 1–23.

    Google Scholar 

  • Weron, R. (1996). On the Chambers-Mallows-Stuck Method for Simulating Skewed Stable Random Variables, Statistics and Probability Letters 28: 165–171. See also R. Weron (1996) Correction to: On the Chambers-Mallows-Stuck Method for Simulating Skewed Stable Random Variables, Working Paper, Available at MPRA: http://mpra.ub.unimuenchende/20761/.

  • Weron, R. (2001). Levy–Stable Distributions Revisited: Tail Index > 2 Does Not Exclude the Levy–Stable Regime, International Journal of Modern Physics C 12: 209–223.

    Article  Google Scholar 

  • Weron, R. (2006). Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach, Wiley, Chichester.

    Google Scholar 

  • Weron, R. (2011). Computationally Intensive Value at Risk Calculations, in J. E. Gentle, W. H¨ardle, Y. Mori (eds.) Handbook of Computational Statistics, 2nd edition, Springer, Berlin, 911–950.

    Google Scholar 

  • Zolotarev, V. M. (1964). On representation of stable laws by integrals, Selected Translations in Mathematical Statistics and Probability 4: 84–88.

    MathSciNet  Google Scholar 

  • Zolotarev, V. M. (1986). One–Dimensional Stable Distributions, American Mathematical Society

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borak, S., Misiorek, A., Weron, R. (2011). Models for heavy-tailed asset returns. In: Cizek, P., Härdle, W., Weron, R. (eds) Statistical Tools for Finance and Insurance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18062-0_1

Download citation

Publish with us

Policies and ethics