Skip to main content

Dream Therapy: Correlation of Dream Contents with Encephalographic and Cardiovascular Activations

  • Chapter
  • First Online:
  • 2928 Accesses

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Sleep and dreaming are overlapping and inseparable phenomena, but they have not often been addressed simultaneously in the scientific sleep research literature. This chapter describes dream research with a focus on objective dream content analysis and on neurocognitive theory analysis. Special emphasis is placed on connecting dream content analysis with current and advanced sleep research methodologies. This chapter presents some of the traditional and current interventions on dreaming during the periods of REM and NREM sleep, namely the behavioral and physical interventions. A more holistic view is provided through the description of the relationship of REM–NREM sleep and dreaming neurophysiology with the autonomous nervous system. A survey of current dream therapy usage is discussed in the light of the holistic approach provided, with the aim of showing pathways for future applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    When the neuron’s membrane potential becomes more positive, the neuron is said to depolarize. This brings the membrane potential closer to the threshold for the cell to produce an action potential, and thus to conduct.

  2. 2.

    Hyperpolarization is the opposite process to depolarization: the membrane potential becomes more negative, increasing its distance to the necessary threshold for producing an action potential.

  3. 3.

    Activity in neurons that has acetylcholine as its neurotransmitter is called cholinergic activity. Cholinesterase is a group of enzymes responsible for the decrease in the acetylcholine levels. If these enzymes’ action is inhibited, in this case by physostigmine, the levels of acetylcholine and the activity in the cholinergic neurons are maintained.

References

  • Ako M, Kawara T, Uchida S, Miyazaki S, Nishihara K, Mukai J, Hirao K, Ako J, Okubo Y (2003) Correlation between electroencephalography and heart rate variability during sleep. Psychiatry Clin Neurosci 57:59–65

    Article  PubMed  Google Scholar 

  • Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274

    Article  PubMed  CAS  Google Scholar 

  • Avila-White D, Schneider A, Domhoff GW (1999) The most recent dreams of 12–13 year-old boys and girls: a methodological contribution to the study of dream content in teenagers. Dreaming 9:163–171

    Article  Google Scholar 

  • Battaglia FP, Sutherland GR, McNaughton BL (2004) Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem 11:697–704

    Article  PubMed  Google Scholar 

  • Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio AR (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Coenen AM (1998) Neuronal phenomena associated with vigilance and consciousness: from cellular mechanisms to electroencephalographic patterns. Conscious Cogn 7:42–53

    Article  PubMed  CAS  Google Scholar 

  • Dang-Vu TT, Desseilles M, Albouy G, Darsaud A, Gais S, Rauchs G, Schabus M, Sterpenich V, Vandewalle G, Schwartz S, Maquet P (2005) Dreaming: a neuroimaging view. Swiss Arch Neurol Psychiatry 156(8):415–425

    Google Scholar 

  • Domhoff GW (1999a) Drawing theoretical implications from descriptive empirical findings on dream content. Dreaming 9:201–210

    Article  Google Scholar 

  • Domhoff GW (1999b) New directions in the study of dream content using the Hall and Van de Castle coding system. Dreaming 9:115–137

    Article  Google Scholar 

  • Domhoff GW (2001) A new neurocognitive theory of dreams. Dreaming 11:13–33

    Article  Google Scholar 

  • Domhoff GW (2005) Refocusing the neurocognitive approach to dreams: a critique of the hobson versus solms debate. Dreaming 15:3–20

    Article  Google Scholar 

  • Domhoff GW, Schneider A (1998) New rationales and methods for quantitative dream research outside the laboratory. Sleep 21:398–404

    PubMed  CAS  Google Scholar 

  • Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86

    Article  PubMed  Google Scholar 

  • Ehrhart J, Toussaint M, Simon C, Gronfier C, Luthringer R, Brandenberger G (2000) Alpha activity and cardiac correlates: three types of relationships during nocturnal sleep. Clin Neurophysiol 111:940–946

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum H (2001) The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav Brain Res 127:199–207

    Article  PubMed  CAS  Google Scholar 

  • Fischer S, Hallschmid M, Elsner AL, Born J (2002) Sleep forms memory for finger skills. Proc Natl Acad Sci USA 99:11987–11991

    Article  PubMed  CAS  Google Scholar 

  • Fosse MJ, Fosse R, Hobson JA, Stickgold RJ (2003) Dreaming and episodic memory: a functional dissociation? J Cogn Neurosci 15:1–9

    Article  PubMed  Google Scholar 

  • Foulkes D (1979) Home and laboratory dreams: four empirical studies and a conceptual reevaluation. Sleep 2:233–251

    PubMed  CAS  Google Scholar 

  • Foulkes D, Rechtschaffen A (1964) Presleep determinants of dream content: effect of two films. Percept Mot Skills 19:983–1005

    Article  PubMed  CAS  Google Scholar 

  • Gais S, Born J (2004a) Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc Natl Acad Sci USA 101:2140–2144

    Article  PubMed  CAS  Google Scholar 

  • Gais S, Born J (2004b) Multiple processes strengthen memory during sleep. Psychol Belg 44:105–120

    Google Scholar 

  • Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Phys D 9:189–208

    Article  Google Scholar 

  • Herbert JD, Gaudiano BA (2001) The search for the holy grail: heart rate variability and thought field therapy. J Clin Psychol 57:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Hobson JA, McCarley RW (1977) The brain as a dream state generator: an activation-synthesis hypothesis of the dream process. Am J Psychiatry 134:1335–1348

    PubMed  CAS  Google Scholar 

  • Hobson JA, Stickgold R, Pace-Schott EF (1998) The neuropsychology of REM sleep dreaming. Neuroreport 9:R1–R14

    Article  PubMed  CAS  Google Scholar 

  • Hobson JA, Pace-Schott EF, Stickgold R (2000) Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behav Brain Sci 23(6):793–842; discussion 904-1121. Review. Erratum in: Behav Brain Sci 2001 Jun;24(3):575. [PMID: 11515143]

    Article  PubMed  CAS  Google Scholar 

  • Ji DY, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10:100–107

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama K, Stickgold R, Walker MP (2004) Sleep-dependent learning and motor-skill complexity. Learn Mem 11:705–713

    Article  PubMed  Google Scholar 

  • Kuriyama K, Mishima K, Suzuki H, Aritake S, Uchiyama M (2008) Sleep accelerates the improvement in working memory performance. J Neurosci 28:10145–10150

    Article  PubMed  CAS  Google Scholar 

  • Lamberts J, van den Broek PLC, Bener L, van Egmond J, Dirksen R, Coenen AML (2000) Correlation dimension of the human electroencephalogram corresponds with cognitive load. Neuropsychobiology 41:149–153

    Article  PubMed  CAS  Google Scholar 

  • Manis G, Nikolopoulos S, Alexandridi A, Davos C (2007) Assessment of the classification capability of prediction and approximation methods for HRV analysis. Comput Biol Med 37:642–654

    Article  PubMed  Google Scholar 

  • Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C et al (2000) Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci 3(8):831–836

    Article  PubMed  CAS  Google Scholar 

  • Morris RGM (2006) Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur J Neurosci 23:2829–2846

    Article  PubMed  CAS  Google Scholar 

  • Nielsen TA (2000) A review of mentation in REM and NREM sleep: “covert” REM sleep as a possible reconciliation of two opposing models. Behav Brain Sci 23:851–866

    Article  PubMed  CAS  Google Scholar 

  • Paller KA, Voss JL (2004) Memory reactivation and consolidation during sleep. Learn Mem 11:664–670

    Article  PubMed  Google Scholar 

  • Payne JD, Schacter DL, Propper RE, Huang LW, Wamsley EJ, Tucker MA, Walker MP, Stickgold R (2009) The role of sleep in false memory formation. Neurobiol Learn Mem 92(3):327–334

    Article  PubMed  Google Scholar 

  • Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, Phillips C, Degueldre C, Del Fiore G, Aerts J, Luxen A, Maquet P (2004) Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44:535–545

    Article  PubMed  CAS  Google Scholar 

  • Rasch B, Born J (2007) Maintaining memories by reactivation. Curr Opin Neurobiol 17:698–703

    Article  PubMed  CAS  Google Scholar 

  • Rasch BH, Born J, Gais S (2006) Combined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidation. J Cogn Neurosci 18:793–802

    Article  PubMed  Google Scholar 

  • Rasch B, Buechel C, Gais S, Born J (2007) Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315:1426–1429

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse CD, Stickgold R, Hobson JA (1994) Constraint on the transformation of characters, objects, and settings in dream reports. Conscious Cogn 3:100–113

    Article  Google Scholar 

  • Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW (1986) Chronic behavioral disorders of human REM-sleep: a new category of parasomnia. Sleep 9:293–308

    PubMed  CAS  Google Scholar 

  • Steriade M, Mccormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    Article  PubMed  CAS  Google Scholar 

  • Sterpenich V, Albouy G, Darsaud A, Schmidt C, Vandewalle G, Vu TTD, Desseilles M, Phillips C, Degueldre C, Balteau E, Collette F, Luxen A, Maquet P (2009) Sleep promotes the neural reorganization of remote emotional memory. J Neurosci 29:5143–5152

    Article  PubMed  CAS  Google Scholar 

  • Stickgold R, Hobson JA, Fosse R, Fosse M (2001) Sleep, learning, and dreams: off-line memory reprocessing. Science 294:1052–1057

    Article  PubMed  CAS  Google Scholar 

  • Strauch I, Meier B, Foulkes D (1996) In search of dreams: results of experimental dream research. State University of New York Press, New York

    Google Scholar 

  • Vertes RP (2004) Memory consolidation in sleep: dream or reality. Neuron 44:135–148

    Article  PubMed  CAS  Google Scholar 

  • Wagner U, Gais S, Haider H, Verleger R, Born J (2004) Sleep inspires insight. Nature 427:352–355

    Article  PubMed  CAS  Google Scholar 

  • Walker MP, Stickgold R (2005) It’s practice, with sleep, that makes perfect: implications of sleep-dependent learning and plasticity for skill performance. Clin Sports Med 24:301–317, ix

    Article  PubMed  Google Scholar 

  • Walker MP, Stickgold R (2006) Sleep, memory, and plasticity. Annu Rev Psychol 57:139–166

    Article  PubMed  Google Scholar 

  • Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R (2002) Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35:205–211

    Article  PubMed  CAS  Google Scholar 

  • Weisz R, Foulkes D (1970) Home and laboratory dreams collected under uniform sampling conditions. Psychophysiology 6:588–596

    Article  PubMed  CAS  Google Scholar 

  • Zhuang Z, Gao X, Gao S (2005) The relationship of HRV to sleep EEG and sleep rhythm. Int J Neurosci 115:315–327

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostinho C. da Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

da Rosa, A.C., Rodrigues, J.P.M. (2011). Dream Therapy: Correlation of Dream Contents with Encephalographic and Cardiovascular Activations. In: Cvetkovic, D., Cosic, I. (eds) States of Consciousness. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18047-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18047-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18046-0

  • Online ISBN: 978-3-642-18047-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics