Skip to main content

Structural Insight into the Substrate Specificity of Phosphodiesterases

  • Chapter
  • First Online:
Phosphodiesterases as Drug Targets

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 204))

Abstract

Cyclic nucleotide phosphodiesterases (PDEs) share a highly conserved catalytic domain that hydrolyzes cAMP, cGMP, or both nucleotides. However, the mechanism that allows the PDE catalytic sites to specifically recognize these nucleotides and distinguish between their subtle differences is still unclear. An early model, called the “glutamine switch”, proposed that the side chain of an invariant glutamine adopts two different conformations to allow for formation of two hydrogen bonds with cAMP and cGMP, thereby differentiating these nucleotides. However, the structure of PDE4D2 in complex with cAMP shows that Gln369 forms only one hydrogen bond with the substrate. In addition, the structures of PDE10A in complex with cAMP and cGMP reveal that cAMP and cGMP bind to the active site in different orientations and have different interactions with PDE10A residues. These structures suggest that the invariant glutamine does not appear to be a key residue to differentiate between cAMP and cGMP, although it is important for substrate binding. The structure-based sequence alignment shows that most of the active site residues change across PDE families. These residues may not only contribute differently to the substrate specificity, but also generate slightly different shapes and sizes of the active sites in different PDE families. Therefore, the substrate specificity of PDEs is likely to be determined jointly by multiple elements at the active site, yet the detailed mechanism needs further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoni F (2000) Molecular diversity of cyclic AMP signaling. Front Neuroendocrinol 21:103–132

    Article  PubMed  CAS  Google Scholar 

  • Beavo JA, Hardman JG, Sutherland EW (1970) Hydrolysis of cyclic guanosine and adenosine 3', 5'-monophosphates by rat and bovine tissues. J Biol Chem 245:5649–5655

    PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Bolger GB, Erdogan S, Jones RE, Loughney K, Scotland G, Hoffmann R, Wilkinson I, Farrell C, Houslay MD (1997) Characterization of five different proteins produced by alternatively spliced mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem J 328:539–548

    PubMed  CAS  Google Scholar 

  • Burgin AB, Magnusson OT, Singh J, Witte P, Staker BL, Bjornsson JM, Thorsteinsdottir M, Hrafnsdottir S, Hagen T, Kiselyov AS, Stewart LJ, Gurney ME (2010) Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol 28:63–70

    Article  PubMed  CAS  Google Scholar 

  • Butcher RW, Sutherland EW (1962) Adenosine 3', 5'-phosphate in biological materials. I. purification and properties of cyclic 3’5’-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3', 5'-phosphate in human urine. J Biol Chem 237:1244–1250

    PubMed  CAS  Google Scholar 

  • Butt E, Beltman J, Becker DE, Jensen GS, Rybalkin SD, Jastorff B, Beavo JA (1995a) Characterization of cyclic nucleotide phosphodiesterases with cyclic GMP analogs: topology of the catalytic domains. Mol Pharmacol 47:330–339

    PubMed  Google Scholar 

  • Butt E, Beltman J, Becker DE, Jensen GS, Rybalkin SD, Jastorff B, Beavo JA (1995b) Characterization of cyclic nucleotide phosphodiesterases with cyclic AMP analogs: topology of the catalytic sites and comparison with other cyclic AMP-binding proteins. Mol Pharmacol 47:340–347

    PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  • Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem 273:15559–15564

    Article  PubMed  CAS  Google Scholar 

  • Francis SH, Zoraghi R, Kotera J, Ke H, Bessay EP, Blouni MA, Corbin JD (2006) Phoephodiesterase 5: Molecular characteristics relating to structure, function, and regulation. In: Beavo JA, Francis SH, Houslay MS (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC Press, Boca Raton, FL, pp 131–164

    Chapter  Google Scholar 

  • Hannila SS, Filbin MT (2008) The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 209:321–332

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock M (1973) Adenosine 3’, 5’-cyclic monophosphate phosphodiesterase in guineq-pig lung-properties and effect of adrenergic drugs. Biochem Pharmacol 22:959–969

    Article  PubMed  CAS  Google Scholar 

  • Horvath A, Stratakis CA (2008) Unraveling the molecular basis of micronodular adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 15:227–233

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD (1998) Adaptation in cyclic AMP signaling processes: a central role for cyclic AMP phosphodiesterases. Cell Develop Biol 9:161–167

    Article  CAS  Google Scholar 

  • Huai Q, Colicelli J, Ke H (2003) The crystal structure of AMP-bound PDE4 suggests a mechanism for phosphodiesterase catalysis †, ‡. Biochemistry 42:13220–13226

    Article  PubMed  CAS  Google Scholar 

  • Huai Q, Wang H, Zhang W, Colman R, Robinson H, Ke H (2004) Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding. Proc Natl Acad Sci USA 101:9624–9629

    Article  PubMed  CAS  Google Scholar 

  • Iffland A, Kohls D, Low S, Luan J, Zhang Y, Kothe M, Cao Q, Kamath AV, Ding YH, Ellenberger T (2005) Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ in vitro translation system. Biochemistry 44:8312–8325

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Evans FE, Sarma RH (1975) Interaction between glycosidic torsion, sugar pucker, and backbone conformation in 5′-b-nucleotides. J Biol Chem 250:1290–1296

    PubMed  CAS  Google Scholar 

  • Liu S, Mansour MN, Dillman KS, Perez JR, Danley DE, Aeed PA, Simons SP, Lemotte PK, Menniti FS (2008) Structural basis for the catalytic mechanism of human phosphodiesterase 9. Proc Natl Acad Sci USA 105:13309–13314

    Article  PubMed  CAS  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  PubMed  CAS  Google Scholar 

  • Mehats C, Andersen CB, Filopanti M, Jin SL, Conti M (2002) Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab 13:29–35

    Article  PubMed  CAS  Google Scholar 

  • Monn E, Christiansen RO (1971) Adenosine 3′, 5′-monophosphate phosphodiesterase: multiple molecular forms. Science 173:540–542

    Article  PubMed  CAS  Google Scholar 

  • Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327

    Article  PubMed  CAS  Google Scholar 

  • O'Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–953

    Article  PubMed  Google Scholar 

  • Piper M, van Horck F, Holt C (2007) The role of cyclic nucleotides in axon guidance. Adv Exp Med Biol 621:134–143

    Article  PubMed  Google Scholar 

  • Scapin G, Patel SB, Chung C, Varnerin JP, Edmondson SD, Mastracchio A, Parmee ER, Singh SB, Becker JW, Van der Ploeg LH, Tota MR (2004) Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity. Biochemistry 43:6091–6100

    Article  PubMed  CAS  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA (1998) Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem 273:15553–15558

    Article  PubMed  CAS  Google Scholar 

  • Turko IV, Francis SH, Corbin JD (1998) Hydropathic analysis and mutagenesis of the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). cGMP versus cAMP substrate selectivity. Biochemistry 37:4200–4205

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liu Y, Chen Y, Robinson H, Ke H (2005) Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7. J Biol Chem 280:30949–30955

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liu Y, Huai Q, Cai J, Zoraghi R, Francis SH, Corbin JD, Robinson H, Xin Z, Lin G, Ke H (2006) Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. J Biol Chem 281:21469–21479

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liu Y, Hou J, Zheng M, Robinson H, Ke H (2007a) Structural insight into substrate specificity of phospodiesterase 10. Proc Natl Acad Sci USA 104:5782–5787

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Robinson H, Ke H (2007b) The molecular basis for recognition of different substrates by phosphodiesterase families 4 and 10. J Mol Biol 371:302–307

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Yan Z, Yang S, Cai J, Robinson H, Ke H (2008) Kinetic and structural studies of phosphodiesterase-8A and implication on the inhibitor selectivity. Biochemistry 47:12760–12768

    Article  PubMed  CAS  Google Scholar 

  • Xu RX, Hassell AM, Vanderwall D, Lambert MH, Holmes WD, Luther MA, Rocque WJ, Milburn MV, Zhao Y, Ke H, Nolte RT (2000) Atomic structure of PDE4: Insight into phosphodiesteras mechanism and specificity. Science 288:1822–1825

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Wang H, Cai J, Ke H (2008) Refolding and kinetic characterization of the phosphodiesterase-8A catalytic domain. Protein Expr Purif 64:82–88

    Article  PubMed  Google Scholar 

  • Yathindra N, Sunderalingam M (1974) Conformations of cyclic 3’, 5’-nucleotides. Effect of the base on the Syn-Anti conformer distribution. Biochem Biophys Res Commun 56:119–126

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M, Movsesian MA (2007) cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res 100:1569–1578

    Article  PubMed  CAS  Google Scholar 

  • Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G (2004) A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell 15:279–286

    Article  PubMed  CAS  Google Scholar 

  • Zoraghi R, Corbin JD, Francis SH (2006) Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity; its orientation impacts cGMP but not cAMP affinity. J Biol Chem 281:5553–5558

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengming Ke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ke, H., Wang, H., Ye, M. (2011). Structural Insight into the Substrate Specificity of Phosphodiesterases. In: Francis, S., Conti, M., Houslay, M. (eds) Phosphodiesterases as Drug Targets. Handbook of Experimental Pharmacology, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17969-3_4

Download citation

Publish with us

Policies and ethics