Skip to main content

Phosphodiesterases: Emerging Therapeutic Targets for Neonatal Pulmonary Hypertension

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 204))

Abstract

Pulmonary hypertension in the neonate is associated with multiple underlying problems such as respiratory distress syndrome, meconium aspiration syndrome, congenital diaphragmatic hernia, bronchopulmonary dysplasia, sepsis, or congenital heart disease. Because of the heterogeneous group of disorders, the therapeutic approach and response often depends on the underlying disease. In many of these conditions, there is evidence that cyclic nucleotide signaling and specifically phosphodiesterases (PDEs) are disrupted. PDE inhibitors represent an emerging class of pulmonary vasodilators in adults. Studies are now under way to evaluate the utility, efficacy, and safety of such therapies in infants with pulmonary hypertension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BPD:

Bronchopulmonary dysplasia

CDH:

Congenital diaphragmatic hernia

COX:

Cyclooxygenase

eNOS:

Endothelial nitric oxide synthase

ET-1:

Endothelin-1

FPASMC:

Fetal pulmonary artery smooth muscle cells

H2O2 :

Hydrogen peroxide

iNOS:

Inducible nitric oxide synthase

iNO:

Inhaled nitric oxide

MAS:

Meconium aspiration syndrome

NAC:

N-acetyl-cysteine

NSAIDs:

Nonsteroidal anti-inflammatory drugs

PPHN:

Persistent pulmonary hypertension of the newborn

PDE:

Phosphodiesterase

PGIS:

Prostacyclin synthase

ROS:

Reactive oxygen species

RVH:

Right ventricular hypertrophy

sGC:

Soluble guanylate cyclase

References

  • Abman SH, Chatfield BA, Hall SL, McMurtry IF (1990) Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol 259:H1921–H1927

    PubMed  CAS  Google Scholar 

  • al-Alaiyan S, al-Omran A, Dyer D (1996) The use of phosphodiesterase inhibitor (dipyridamole) to wean from inhaled nitric oxide. Intensive Care Med 22(10):1093–1095

    Article  PubMed  CAS  Google Scholar 

  • Atz AM, Wessel DL (1999) Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology 91(1):307–310

    Article  PubMed  CAS  Google Scholar 

  • Atz AM, Adatia I, Wessel DL (1996) Rebound pulmonary hypertension after inhalation of nitric oxide. Ann Thorac Surg 62(6):1759–1764

    Article  PubMed  CAS  Google Scholar 

  • Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD, Walsh MC, Durand DJ, Mayock DE, Eichenwald EC, Null DR, Hudak ML, Puri AR, Golombek SG, Courtney SE, Stewart DL, Welty SE, Phibbs RH, Hibbs AM, Luan X, Wadlinger SR, Asselin JM, Coburn CE (2006) Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med 355(4):343–353

    Article  PubMed  CAS  Google Scholar 

  • Baquero H, Soliz A, Neira F, Venegas ME, Sola A (2006) Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics 117(4):1077–1083

    Article  PubMed  Google Scholar 

  • Bassler D, Choong K, McNamara P, Kirpalani H (2006) Neonatal persistent pulmonary hypertension treated with milrinone: four case reports. Biol Neonate 89(1):1–5

    Article  PubMed  Google Scholar 

  • Black SM, Fineman JR, Steinhorn RH, Bristow J, Soifer SJ (1998) Increased endothelial NOS in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol 275(5 Pt 2):H1643–H1651

    PubMed  CAS  Google Scholar 

  • Black SM, Bekker JM, Johengen MJ, Parry AJ, Soifer SJ, Fineman JR (2000) Altered regulation of the ET-1 cascade in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr Res 47:97–106

    Article  PubMed  CAS  Google Scholar 

  • Black SM, Sanchez LS, Mata-Greenwood E, Bekker JM, Steinhorn RH, Fineman JR (2001) sGC and PDE5 are elevated in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 281(5):L1051–L1057

    PubMed  CAS  Google Scholar 

  • Black SM, Mata-Greenwood E, Dettman RW, Ovadia B, Fitzgerald RK, Reinhartz O, Thelitz S, Steinhorn RH, Gerrets R, Hendricks-Munoz K, Ross GA, Bekker JM, Johengen MJ, Fineman JR (2003) Emergence of smooth muscle cell endothelin B-vasoconstriction in lambs with experimental congenital heart disease and increased pulmonary blood flow. Circulation 108:1646–1654

    Article  PubMed  CAS  Google Scholar 

  • Bland RD, Ling CY, Albertine KH, Carlton DP, MacRitchie AJ, Day RW, Dahl MJ (2003) Pulmonary vascular dysfunction in preterm lambs with chronic lung disease. Am J Physiol Lung Cell Mol Physiol 285(1):L76–L85

    PubMed  CAS  Google Scholar 

  • Bloch KD, Filippov G, Sanchez LS, Nakane M, de la Monte SM (1997) Pulmonary soluble guanylate cyclase, a nitric oxide receptor, is increased during the perinatal period. Am J Physiol 272:L400–L406

    PubMed  CAS  Google Scholar 

  • Brannon TS, North AJ, Wells LB, Shaul PW (1994) Prostacyclin synthesis in ovine pulmonary artery is developmentally regulated by changes in cyclooxygenase-1 gene expression. J Clin Invest 93:2230–2235

    Article  PubMed  CAS  Google Scholar 

  • Brannon TS, MacRitchie AN, Jaramillo MA, Sherman TS, Yuhanna IS, Margraf LR, Shaul PW (1998) Ontogeny of cyclooxygenase-1 and cyclooxygenase-2 gene expression in ovine lung. Am J Physiol 274:L66–L71

    PubMed  CAS  Google Scholar 

  • Brennan LA, Steinhorn RH, Wedgwood S, Mata-Greenwood E, Roark EA, Russell JA, Black SM (2003) Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res 92:683–691

    Article  PubMed  CAS  Google Scholar 

  • Buysse C, Fonteyne C, Dessy H, De Laet MH, Biarent D (2001) The use of dipyridamole to wean from inhaled nitric oxide in congenital diaphragmatic hernia. J Pediatr Surg 36(12):1864–1865

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Su Z, Shi Z, Zhou Y, Xu Z, Liu J, Chen L, Xu Z, Yu X, Ding W, Yang Y (2008a) Nitric oxide in conjunction with milrinone better stabilized pulmonary hemodynamics after Fontan procedure. Artif Organs 32(11):864–869

    Article  PubMed  Google Scholar 

  • Cai J, Su Z, Shi Z, Zhou Y, Xu Z, Xu Z, Yang Y (2008b) Nitric oxide and milrinone: combined effect on pulmonary circulation after Fontan-type procedure: a prospective, randomized study. Ann Thorac Surg 86(3):882–888, discussion 882–888

    Article  PubMed  Google Scholar 

  • Chang AC, Atz AM, Wernovsky G, Burke RP, Wessel DL (1995) Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med 23(11):1907–1914

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Lakshminrusimha S, Czech L, Groh BS, Gugino SF, Russell JA, Farrow KN, Steinhorn RH (2009) Regulation of phosphodiesterase 3 in the pulmonary arteries during the perinatal period in sheep. Pediatr Res 66(6):682–687

    Article  PubMed  CAS  Google Scholar 

  • Clark RH, Kueser TJ, Walker MW, Southgate WM, Huckaby JL, Perez JA, Roy BJ, Keszler M, Kinsella JP (2000) Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn Clinical Inhaled Nitric Oxide Research Group. N Engl J Med 342(7):469–474

    Article  PubMed  CAS  Google Scholar 

  • Clark RH, Huckaby JL, Kueser TJ, Walker MW, Southgate WM, Perez JA, Roy BJ, Keszler M (2003) Low-dose nitric oxide therapy for persistent pulmonary hypertension: 1-year follow-up. J Perinatol 23(4):300–303

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  • de Buys Roessingh AS, Dinh-Xuan AT (2009) Congenital diaphragmatic hernia: current status and review of the literature. Eur J Pediatr 168(4):393–406

    Article  PubMed  Google Scholar 

  • de Visser YP, Walther FJ, Laghmani EH, van Wijngaarden S, Nieuwland K, Wagenaar GT (2008) Phosphodiesterase-4 inhibition attenuates pulmonary inflammation in neonatal lung injury. Eur Respir J 31(3):633–644

    Article  PubMed  CAS  Google Scholar 

  • de Visser YP, Walther FJ, Laghmani el H, Boersma H, van der Laarse A, Wagenaar GT (2009) Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury. Respir Res 10:30

    Article  PubMed  CAS  Google Scholar 

  • Dukarm RC, Morin FC 3rd, Russell JA, Steinhorn RH (1998) Pulmonary and systemic effects of the phosphodiesterase inhibitor dipyridamole in newborn lambs with persistent pulmonary hypertension. Pediatr Res 44(6):831–837

    Article  PubMed  CAS  Google Scholar 

  • Dukarm RC, Steinhorn RH, Russell JA, Lakshminrusimha S, Swartz D, Cummings JJ (2005) Selective type 5 phosphodiesterase inhibition alters pulmonary hemodynamics and lung liquid production in near term fetal lambs. J Appl Physiol 99(6):2331–2336

    Article  PubMed  CAS  Google Scholar 

  • Evgenov OV, Busch CJ, Evgenov NV, Liu R, Petersen B, Falkowski GE, Petho B, Vas A, Bloch KD, Zapol WM, Ichinose F (2006) Inhibition of phosphodiesterase 1 augments the pulmonary vasodilator response to inhaled nitric oxide in awake lambs with acute pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290(4):L723–L729

    Article  PubMed  CAS  Google Scholar 

  • Fan Chung K (2006) Phosphodiesterase inhibitors in airways disease. Eur J Pharmacol 533(1–3):110–117

    Article  PubMed  CAS  Google Scholar 

  • Farrow KN, Fliman P, Steinhorn RH (2005) The diseases treated with ECMO: focus on PPHN. Semin Perinatol 29(1):8–14

    Article  PubMed  Google Scholar 

  • Farrow KN, Groh BS, Schumacker PT, Lakshminrusimha S, Czech L, Gugino SF, Russell JA, Steinhorn RH (2008a) Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ Res 102(2):226–233

    Article  PubMed  CAS  Google Scholar 

  • Farrow KN, Lakshminrusimha S, Reda WJ, Wedgwood S, Czech L, Gugino SF, Davis JM, Russell JA, Steinhorn RH (2008b) Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295(6):L979–L987

    Article  PubMed  CAS  Google Scholar 

  • Farrow KN, Lakshminrusimha S, Czech L, Groh BS, Gugino SF, Davis JM, Russell JA, Steinhorn RH (2010a) Superoxide dismutase and inhaled nitric oxide normalize phosphodiesterase 5 expression and activity in neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 299(1):L109–L116

    Article  PubMed  CAS  Google Scholar 

  • Farrow KN, Wedgwood S, Lee KJ, Czech L, Gugino SF, Lakshminrusimha S, Schumacker PT, Steinhorn RH (2010b) Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. Respir Physiol Neurobiol. doi:10.1016/j.resp. 2010.08.018

    PubMed  Google Scholar 

  • Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, Grimminger F, Kurzyna M, Simonneau G (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353(20):2148–2157

    Article  PubMed  CAS  Google Scholar 

  • Gelfand SL, Fanaroff JM, Walsh MC (2004) Controversies in the treatment of meconium aspiration syndrome. Clin Perinatol 31(3):445–452

    Article  PubMed  Google Scholar 

  • Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333(4):214–221

    Article  PubMed  CAS  Google Scholar 

  • Group, N.I.N.O.S (1997) Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. New Eng J Med 336:597–604

    Article  Google Scholar 

  • Group, N.I.N.O.S (2000) Inhaled nitric oxide in term and near-term infants: neurodevelopmental follow-up of the neonatal inhaled nitric oxide study group (NINOS). J Pediatr 136(5):611–617

    Article  Google Scholar 

  • Hanson KA, Burns F, Rybalkin SD, Miller JW, Beavo J, Clarke WR (1998a) Developmental changes in lung cGMP phosphodiesterase-5 activity, protein, and message. Am J Respir Crit Care Med 158(1):279–288

    PubMed  CAS  Google Scholar 

  • Hanson KA, Ziegler JW, Rybalkin SD, Miller JW, Abman SH, Clarke WR (1998b) Chronic pulmonary hypertension increases fetal lung cGMP phosphodiesterase activity. Am J Physiol 275(5 Pt 1):L931–L941

    PubMed  CAS  Google Scholar 

  • Haworth SG (1988) Pulmonary vascular remodeling in neonatal pulmonary hypertension. Chest 93:133S–138S

    PubMed  CAS  Google Scholar 

  • Hoffman JI, Rudolph AM, Heymann MA (1981) Pulmonary vascular disease with congenital heart lesions: pathologic features and causes. Circulation 64(5):873–877

    Article  PubMed  CAS  Google Scholar 

  • Hoffman TM, Wernovsky G, Atz AM, Kulik TJ, Nelson DP, Chang AC, Bailey JM, Akbary A, Kocsis JF, Kaczmarek R, Spray TL, Wessel DL (2003) Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 107(7):996–1002

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD, Schafer P, Zhang KY (2005) Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 10(22):1503–1519

    Article  PubMed  CAS  Google Scholar 

  • Ivy DD, Kinsella JP, Ziegler JW, Abman SH (1998) Dipyridamole attenuates rebound pulmonary hypertension after inhaled nitric oxide withdrawal in postoperative congenital heart disease. J Thorac Cardiovasc Surg 115(4):875–882

    Article  PubMed  CAS  Google Scholar 

  • Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163(7):1723–1729

    PubMed  CAS  Google Scholar 

  • Karamanoukian HL, Peay T, Love JE, Abdel-Rahman E, Dandonna P, Azizkhan RG, Glick PL (1996) Decreased pulmonary nitric oxide synthase activity in the rat model of congenital diaphragmatic hernia. J Pediatr Surg 31(8):1016–1019

    Article  PubMed  CAS  Google Scholar 

  • Keller RL, Hamrick SE, Kitterman JA, Fineman JR, Hawgood S (2004) Treatment of rebound and chronic pulmonary hypertension with oral sildenafil in an infant with congenital diaphragmatic hernia. Pediatr Crit Care Med 5(2):184–187

    Article  PubMed  Google Scholar 

  • Khemani E, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC, Mullen MP (2007) Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 120(6):1260–1269

    Article  PubMed  Google Scholar 

  • Kinsella JP, Cutter GR, Walsh WF, Gerstmann DR, Bose CL, Hart C, Sekar KC, Auten RL, Bhutani VK, Gerdes JS, George TN, Southgate WM, Carriedo H, Couser RJ, Mammel MC, Hall DC, Pappagallo M, Sardesai S, Strain JD, Baier M, Abman SH (2006) Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N Engl J Med 355(4):354–364

    Article  PubMed  CAS  Google Scholar 

  • Konduri GG (2004) New approaches for persistent pulmonary hypertension of newborn. Clin Perinatol 31(3):591–611

    Article  PubMed  Google Scholar 

  • Konduri GG, Ou J, Shi Y, Pritchard KA (2003) Decreased association of hsp90 impairs endothelial nitric oxide synthase in fetal lambs with persistent pulmonary hypertension. Am J Physiol Heart Circ Physiol 285:H204–H211

    PubMed  CAS  Google Scholar 

  • Ladha F, Bonnet S, Eaton F, Hashimoto K, Korbutt G, Thebaud B (2005) Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury. Am J Respir Crit Care Med 172:750–756

    Article  PubMed  Google Scholar 

  • Lakshminrusimha S, Steinhorn RH (1999) Pulmonary vascular biology during neonatal transition. Clin Perinatol 26(3):601–619

    PubMed  CAS  Google Scholar 

  • Lakshminrusimha S, Steinhorn RH (2009) Phosphodiesterase inhibitors in the management of persistent pulmonary hypertension of the newborn (PPHN). eNeonatal Review 6(12) http://www.hopkinscme.edu/ofp/eNeonatalReview/Newsletters/2009/0909.html

  • Lakshminrusimha S, Russell JA, Steinhorn RH, Ryan RM, Gugino SF, Morin FC 3rd, Swartz DD, Kumar VH (2006) Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation. Pediatr Res 59(1):137–141

    Article  PubMed  Google Scholar 

  • Lakshminrusimha S, Russell JA, Steinhorn RH, Swartz DD, Ryan RM, Gugino SF, Wynn KA, Kumar VH, Mathew B, Kirmani K, Morin FC 3rd (2007a) Pulmonary hemodynamics in neonatal lambs resuscitated with 21%, 50%, and 100% oxygen. Pediatr Res 62(3):313–318

    Article  PubMed  CAS  Google Scholar 

  • Lakshminrusimha S, Wiseman D, Black SM, Russell JA, Gugino SF, Oishi P, Steinhorn RH, Fineman JR (2007b) The role of nitric oxide synthase-derived reactive oxygen species in the altered relaxation of pulmonary arteries from lambs with increased pulmonary blood flow. Am J Physiol Heart Circ Physiol 293(3):H1491–H1497

    Article  PubMed  CAS  Google Scholar 

  • Lakshminrusimha S, Porta NF, Farrow KN, Chen B, Gugino SF, Kumar VH, Russell JA, Steinhorn RH (2009a) Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med 10(1):106–112

    Article  PubMed  Google Scholar 

  • Lakshminrusimha S, Swartz DD, Gugino SF, Ma CX, Wynn KA, Ryan RM, Russell JA, Steinhorn RH (2009b) Oxygen concentration and pulmonary hemodynamics in newborn lambs with pulmonary hypertension. Pediatr Res 66(5):539–544

    Article  PubMed  Google Scholar 

  • Lee JE, Hillier SC, Knoderer CA (2008) Use of sildenafil to facilitate weaning from inhaled nitric oxide in children with pulmonary hypertension following surgery for congenital heart disease. J Intensive Care Med 23(5):329–334

    Article  PubMed  Google Scholar 

  • Leffler CW, Hessler JR, Green RS (1984) The onset of breathing at birth stimulates pulmonary vascular prostacyclin synthesis. Pediatr Res 18:938–942

    PubMed  CAS  Google Scholar 

  • Levin DL, Rudolph AM, Heymann MA, Phibbs RH (1976) Morphological development of the pulmonary vascular bed in fetal lambs. Circulation 53:144–151

    PubMed  CAS  Google Scholar 

  • Loughney K, Hill TR, Florio VA, Uher L, Rosman GJ, Wolda SL, Jones BA, Howard ML, McAllister-Lucas LM, Sonnenburg WK, Francis SH, Corbin JD, Beavo JA, Ferguson K (1998) Isolation and characterization of cDNA encoding PDE5A, a human cGMP-binding, cGMP-specific 3′, 5′-cyclic nucleotide phosphodiesterase. Gene 216:139–147

    Article  PubMed  CAS  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(3):366–398

    Article  PubMed  CAS  Google Scholar 

  • Maclean MR, Johnston ED, McCulloch KM, Pooley L, Houslay MD, Sweeney G (1997) Phosphodiesterase isoforms in the pulmonary arterial circulation of the rat: changes in pulmonary hypertension. J Pharmacol Exp Ther 283(2):619–624

    PubMed  CAS  Google Scholar 

  • Manchester D, Margolis HS, Sheldon RE (1976) Possible association between maternal indomethacin therapy and primary pulmonary hypertension of the newborn. Am J Obstet Gynecol 126:467–469

    PubMed  CAS  Google Scholar 

  • McNamara PJ, Laique F, Muang-In S, Whyte HE (2006) Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn. J Crit Care 21(2):217–222

    Article  PubMed  CAS  Google Scholar 

  • Millen J, MacLean MR, Houslay MD (2006) Hypoxia-induced remodelling of PDE4 isoform expression and cAMP handling in human pulmonary artery smooth muscle cells. Eur J Cell Biol 85(7):679–691

    Article  PubMed  CAS  Google Scholar 

  • Morin FC 3rd (1989) Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension in the newborn lamb. Pediatr Res 25:245–250

    Article  PubMed  Google Scholar 

  • Mourani PM, Sontag MK, Younoszai A, Ivy DD, Abman SH (2008) Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease. Pediatrics 121(2):317–325

    Article  PubMed  Google Scholar 

  • Mourani PM, Sontag MK, Ivy DD, Abman SH (2009) Effects of long-term sildenafil treatment for pulmonary hypertension in infants with chronic lung disease. J Pediatr 154(3):379–384, 384 e1-e2

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Dombi T, Wittke B, Lalonde R (2009) Population pharmacokinetics of sildenafil in term neonates: evidence of rapid maturation of metabolic clearance in the early postnatal period. Clin Pharmacol Ther 85(1):56–63

    Article  PubMed  CAS  Google Scholar 

  • Murphy JD, Rabinovitch M, Goldstein JD, Reid LM (1981) The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr 98(6):962–967

    Article  PubMed  CAS  Google Scholar 

  • Murray F, Patel HH, Suda RY, Zhang S, Thistlethwaite PA, Yuan JX, Insel PA (2007) Expression and activity of cAMP phosphodiesterase isoforms in pulmonary artery smooth muscle cells from patients with pulmonary hypertension: role for PDE1. Am J Physiol Lung Cell Mol Physiol 292(1):L294–L303

    Article  PubMed  CAS  Google Scholar 

  • Namachivayam P, Theilen U, Butt WW, Cooper SM, Penny DJ, Shekerdemian LS (2006) Sildenafil prevents rebound pulmonary hypertension after withdrawal of nitric oxide in children. Am J Respir Crit Care Med 174(9):1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Noori S, Friedlich P, Wong P, Garingo A, Seri I (2007) Cardiovascular effects of sildenafil in neonates and infants with congenital diaphragmatic hernia and pulmonary hypertension. Neonatology 91(2):92–100

    Article  PubMed  CAS  Google Scholar 

  • Okogbule-Wonodi AC, Ibe BO, Yue BW, Hsu S, Raj JU (1998) Phosphodiesterase activity in intrapulmonary arteries and veins of perinatal lambs. Mol Genet Metab 65(3):229–237

    Article  PubMed  CAS  Google Scholar 

  • Rabinovitch M, Haworth SG, Castaneda AR, Nadas AS, Reid LM (1978) Lung biopsy in congenital heart disease: a morphometric approach to pulmonary vascular disease. Circulation 58(6):1107–1122

    PubMed  CAS  Google Scholar 

  • Rabinovitch M, Keane JF, Norwood WI, Castaneda AR, Reid L (1984) Vascular structure in lung tissue obtained at biopsy correlated with pulmonary hemodynamic findings after repair of congenital heart defects. Circulation 69(4):655–667

    Article  PubMed  CAS  Google Scholar 

  • Rabinovitch M, Bothwell T, Hayakawa BN, Williams WG, Trusler GA, Rowe RD, Olley PM, Cutz E (1986) Pulmonary artery endothelial abnormalities in patients with congenital heart defects and pulmonary hypertension A correlation of light with scanning electron microscopy and transmission electron microscopy. Lab Invest 55(6):632–653

    PubMed  CAS  Google Scholar 

  • Reddy VM, Wong J, Liddicoat JR, Johengen M, Chang R, Fineman JR (1996) Altered endothelium-dependent responses in lambs with pulmonary hypertension and increased pulmonary blood flow. Am J Physiol 271(2 Pt 2):H562–H570

    PubMed  CAS  Google Scholar 

  • Ross GA, Oishi P, Azakie A, Fratz S, Fitzgerald RK, Johengen MJ, Harmon C, Hendricks-Munoz K, Xu J, Black SM, Fineman JR (2005) Endothelial alterations during inhaled NO in lambs with pulmonary hypertension: implications for rebound hypertension. Am J Physiol Lung Cell Mol Physiol 288(1):L27–L35

    Article  PubMed  CAS  Google Scholar 

  • Sanchez LS, de la Monte SM, Filippov G, Jones RC, Zapol WM, Bloch KD (1998) Cyclic-GMP-binding, cyclic-GMP-specific phosphodiesterase (PDE5) gene expression is regulated during rat pulmonary development. Pediatr Res 43(2):163–168

    Article  PubMed  CAS  Google Scholar 

  • Schermuly RT, Pullamsetti SS, Kwapiszewska G, Dumitrascu R, Tian X, Weissmann N, Ghofrani HA, Kaulen C, Dunkern T, Schudt C, Voswinckel R, Zhou J, Samidurai A, Klepetko W, Paddenberg R, Kummer W, Seeger W, Grimminger F (2007) Phosphodiesterase 1 upregulation in pulmonary arterial hypertension: target for reverse-remodeling therapy. Circulation 115(17):2331–2339

    Article  PubMed  CAS  Google Scholar 

  • Shah PS, Ohlsson A (2007) Sildenafil for pulmonary hypertension in neonates. Cochrane Database Syst Rev 3:CD005494

    PubMed  Google Scholar 

  • Shaul PW, Wells LB (1994) Oxygen modulates nitric oxide production selectively in fetal pulmonary endothelial cells. Am J Respir Crit Care Med 11:432–438

    CAS  Google Scholar 

  • Shaul PW, Campbell WB, Farrar MA, Magness RR (1992) Oxygen modulates prostacyclin synthesis in ovine fetal pulmonary arteries by an effect on cyclooxygenase. J Clin Invest 90:2147–2155

    Article  PubMed  CAS  Google Scholar 

  • Shaul PW, Yuhanna IS, German Z, Chen Z, Steinhorn RH, Morin FC 3rd (1997) Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 272:L1005–L1012

    CAS  Google Scholar 

  • Shaul PW, Afshar S, Gibson LL, Sherman TS, Kerecman JD, Grubb PH, Yoder BA, McCurnin DC (2002) Developmental changes in nitric oxide synthase isoform expression and nitric oxide production in fetal baboon lung. Am J Physiol Lung Cell Mol Physiol 283(6):L1192–L1199

    PubMed  CAS  Google Scholar 

  • Shekerdemian LS, Ravn HB, Penny DJ (2002) Intravenous sildenafil lowers pulmonary vascular resistance in a model of neonatal pulmonary hypertension. Am J Respir Crit Care Med 165(8):1098–1102

    PubMed  Google Scholar 

  • Shekerdemian LS, Ravn HB, Penny DJ (2004) Interaction between inhaled nitric oxide and intravenous sildenafil in a porcine model of meconium aspiration syndrome. Pediatr Res 55(3):413–418

    Article  PubMed  CAS  Google Scholar 

  • Steinhorn RH, Morin FC 3rd, Van Wylen DG, Gugino SF, Giese EC, Russell JA (1994) Endothelium-dependent relaxations to adenosine in juvenile rabbit pulmonary arteries and veins. Am J Physiol 266:H2001–H2006

    PubMed  CAS  Google Scholar 

  • Steinhorn RH, Russell JA, Morin FC 3rd (1995) Disruption of cGMP production in pulmonary arteries isolated from fetal lambs with pulmonary hypertension. Am J Physiol Heart Circ Physiol 268:H1483–H1489

    CAS  Google Scholar 

  • Steinhorn RH, Russell JA, Lakshminrusimha S, Gugino SF, Black SM, Fineman JR (2001) Altered endothelium-dependent relaxations in lambs with high pulmonary blood flow and pulmonary hypertension. Am J Physiol Heart Circ Physiol 280(1):H311–H317

    PubMed  CAS  Google Scholar 

  • Steinhorn RH, Kinsella JP, Pierce C, Butrous G, Dilleen M, Oakes M, Wessel DL (2009) Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J Pediatr 155(6):841–847 e1

    Article  PubMed  CAS  Google Scholar 

  • Stocker C, Penny DJ, Brizard CP, Cochrane AD, Soto R, Shekerdemian LS (2003) Intravenous sildenafil and inhaled nitric oxide: a randomised trial in infants after cardiac surgery. Intensive Care Med 29(11):1996–2003

    Article  PubMed  Google Scholar 

  • Thebaud B, Saizou C, Farnoux C, Hartman JF, Mercier JC (1999) Dypiridamole, a cGMP phosphodiesterase inhibitor, transiently improves the response to inhaled nitric oxide in two newborns with congenital diaphragmatic hernia. Intensive Care Med 25(3):300–303

    Article  PubMed  CAS  Google Scholar 

  • Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, Hashimoto K, Harry G, Haromy A, Korbutt G, Archer SL (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112(16):2477–2486

    Article  PubMed  CAS  Google Scholar 

  • Thelitz S, Oishi P, Sanchez LS, Bekker JM, Ovadia B, Johengen MJ, Black SM, Fineman JR (2004) Phosphodiesterase-3 inhibition prevents the increase in pulmonary vascular resistance following inhaled nitric oxide withdrawal in lambs. Pediatr Crit Care Med 5(3):234–239

    Article  PubMed  Google Scholar 

  • Thusu KG, Morin FC 3rd, Russell JA, Steinhorn RH (1995) The cGMP phosphodiesterase inhibitor zaprinast enhances the effect of nitric oxide. Am J Respir Crit Care Med 152(5 Pt 1):1605–1610

    PubMed  CAS  Google Scholar 

  • Tiktinsky MH, Morin FC 3rd (1993) Increasing oxygen tension dilates fetal pulmonary circulation via endothelium-derived relaxing factor. Am J Physiol 265(1 Pt 2):H376–H380

    PubMed  CAS  Google Scholar 

  • Tzao C, Nickerson PA, Russell JA, Gugino SF, Steinhorn RH (2001) Pulmonary hypertension alters soluble guanylate cyclase activity and expression in pulmonary arteries isolated from fetal lambs. Pediatr Pulmonol 31(2):97–105

    Article  PubMed  CAS  Google Scholar 

  • Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG (1995) Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 269:C1371–C1378

    PubMed  CAS  Google Scholar 

  • Vento M, Asensi M, Sastre J, Garcia-Sala F, Pallardo FV, Vina J (2001) Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics 107(4):642–647

    Article  PubMed  CAS  Google Scholar 

  • Villanueva ME, Zaher FM, Svinarich DM, Konduri GG (1998) Decreased gene expression of endothelial nitric oxide synthase in newborns with persistent pulmonary hypertension. Pediatr Res 44:338–343

    Article  PubMed  CAS  Google Scholar 

  • Vukcevic Z, Coppola CP, Hults C, Gosche JR (2005) Nitrovasodilator responses in pulmonary arterioles from rats with nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 40(11):1706–1711

    Article  PubMed  Google Scholar 

  • Walsh MC, Szefler S, Davis J, Allen M, Van Marter L, Abman S, Blackmon L, Jobe A (2006) Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics 117(3 Pt 2):S52–S56

    PubMed  Google Scholar 

  • Walsh-Sukys MC, Tyson JE, Wright LL, Bauer CR, Korones SB, Stevenson DK, Verter J, Stoll BJ, Lemons JA, Papile L, Shankaran S, Donovan EF, Oh W, Ehrenkranz RA, Fanaroff AA (2000) Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics 105:14–20

    Article  PubMed  CAS  Google Scholar 

  • Wild LM, Nickerson PA, Morin FC 3rd (1989) Ligating the ductus arteriosus before birth remodels the pulmonary vasculature of the lamb. Pediatr Res 25:251–257

    Article  PubMed  CAS  Google Scholar 

  • Worwag S, Mulla H, Luyt D, Firmin RK (2000) Dipyridamole in the treatment of a neonate with persistent pulmonary hypertension. J R Soc Med 93(2):77–78

    PubMed  CAS  Google Scholar 

  • Woyda K, Koebrich S, Reiss I, Rudloff S, Pullamsetti SS, Ruhlmann A, Weissmann N, Ghofrani HA, Gunther A, Seeger W, Grimminger F, Morty RE, Schermuly RT (2009) Inhibition of phosphodiesterase 4 enhances lung alveolarisation in neonatal mice exposed to hyperoxia. Eur Respir J 33(4):861–870

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M, Movsesian MA (2007) cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res 100(11):1569–1578

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by NIH grants HL086715 (KNF) and HL54705 (RHS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn N. Farrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farrow, K.N., Steinhorn, R.H. (2011). Phosphodiesterases: Emerging Therapeutic Targets for Neonatal Pulmonary Hypertension. In: Francis, S., Conti, M., Houslay, M. (eds) Phosphodiesterases as Drug Targets. Handbook of Experimental Pharmacology, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17969-3_11

Download citation

Publish with us

Policies and ethics