Skip to main content

The Development of Pyrethroid Resistance in the Mosquito Culex quinquefasciatus

  • Chapter

Abstract

Mosquito-borne diseases are the number-one killers of humans worldwide. A major obstacle in controlling these diseases is that mosquitoes have developed resistance to insecticides, including pyrethroids, which are currently the most widely used insecticides for the indoor control of mosquitoes and are the only chemicals recommended for the treatment of mosquito nets, the main tool for preventing malaria in Africa. A large number of studies have shown that multiple, complex resistance mechanisms or genes are likely to be responsible for insecticide resistance and gene overexpression, amplification, and structural mutations have frequently been linked to insecticide resistance in mosquitoes. Among them, the two major mechanisms involved in the development of insecticide resistance are: (1) increased metabolic detoxification of the insecticides and (2) decreased sensitivity of the target sites to the insecticides (i.e., target site insensitivity). In this chapter, we will summarize our current research and knowledge on the molecular mechanisms governing insecticide resistance development in mosquitoes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Buckingham S D, Sattelle D B. GABA receptors of insects. // Gilbert L I, Iatrou K and Gill S S. Comprehensive Molecular Insect Science. Oxford: Elsevier, 2005, 5: 107–142.

    Chapter  Google Scholar 

  • Brengues C, Hawkes N J, Chandre F, et al. Pyrethroid and DDT cross resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med. Vet. Entomol., 2003, 17: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Carino F A, Koener J F, Plapp Jr F W, et al. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem. Molec. Biol., 1994, 24: 411–418.

    Article  CAS  Google Scholar 

  • Enayati A A, Hemingway J. Pyrethroid insecticide resistance and treated bednets efficacy in malaria control. Pesticide Biochem. Physiol., 2006, 84: 116–126.

    Article  CAS  Google Scholar 

  • Enayati A A, Vatandoost H, Ladonni H, et al. Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. Med. Vet. Entomol., 2003, 17: 138–144.

    Article  PubMed  CAS  Google Scholar 

  • Feyereisen R. Molecular biology of insecticide resistance. Toxicol. Letter, 1995, 82/83: 83–90.

    Article  Google Scholar 

  • Feyereisen R. Insect Cytochrome P450. // Gilbert L I, Iatrou K and Gill S. Comprehensive molecular insect science. (Eds.), Oxford: Elsevier, 2005, 4: 1–77.

    Chapter  Google Scholar 

  • Filipek S, Stenkamp R E, Teller D C, et al. G protein coupled receptor rhodopsin: a prospectus. Annu. Rev. Physiol., 2003, 65: 851–879.

    Article  PubMed  CAS  Google Scholar 

  • Gubler D J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res., 2002, 33: 330–342.

    Article  PubMed  Google Scholar 

  • Hemingway J, Field L, Vontas J. An overview of insecticide resistance. Science, 2002, 298: 96–97.

    Article  PubMed  CAS  Google Scholar 

  • Hemingway J, Karunaratne S H P P. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med. Vet. Entomol., 1998, 12: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Jones S C, Morris J, Hill G, et al. St. Louis encephalitis outbreak in Louisiana in 2001. J. La. State Med. Soc., 2002, 154: 303–306.

    PubMed  Google Scholar 

  • Liu H, Cupp E W, Micher K M, et al. Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefasciatus. J Med. Entom., 2004a, 41: 408–413.

    Article  CAS  Google Scholar 

  • Liu H, Cupp E W, Guo A, et al. Insecticide resistance in Alabama and Florida mosquito strains of Aedes albopictus. J Med. Entom., 2004b, 41: 946–952.

    Article  CAS  Google Scholar 

  • Liu N, Liu H, Zhu F, et al. Differential expression of genes in pyrethroid resistant and susceptible mosquitoes, Culex quinquefasciatus. Gene, 2007, 394: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Scott J G. Genetic analysis of factors controlling elevated cytochrome P450, CYP6D1, cytochrome b5, P450 reductase and monooxygenase activities in LPR house flies, Musca domestica. Biochem. Genet., 1996, 34: 133–148.

    PubMed  CAS  Google Scholar 

  • Liu N, Scott J G. Phenobarbital induction of CYP6D1 is due to a trans acting factor on autosome 2 in house flies, Musca domestica. Insect Molec. Biol., 1997, 6: 77–81.

    Article  CAS  Google Scholar 

  • Liu N, Scott J G. Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Biochem. Molec. Biol., 1998, 28: 531–535.

    Article  CAS  Google Scholar 

  • Liu N, Xu Q, Zhang L. Sodium channel gene expression in mosquitoes, Aedes albopictus (S.). Insect Sci., 2006, 13: 431–436.

    Article  CAS  Google Scholar 

  • Liu N, Yue X. Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). J. Econ. Entomol., 2000, 93: 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Yue X. Genetics of pyrethroid resistance in a. strain (ALHF) of house flies (Diptera: Muscidae). Pestic. Biochem. Physiol., 2001, 70: 151–158.

    Article  CAS  Google Scholar 

  • Marshall E. A renewed assault on an old and deadly foe. Science, 2000, 290: 428–441.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Torres D, Chandre F, Williamson M S, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol. Biol., 1998, 7: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Torres D, Chevilon C, Brun-Barale A, et al. Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L. mosquitoes. Pestc. Sci., 1999, 55: 1012–1020.

    Article  CAS  Google Scholar 

  • Narahashi T. Molecular and cellular approaches to neurotoxicology: past, present and future. // Lunt G G. Neurotox’88: molecular basis of drug and pesticide action. New York: Elsevier, 1988: 563–582.

    Google Scholar 

  • Oakeshott J G, Claudianos C, Campbell P M, et al. Biochemical genetics and genomics of insect esterases. // Gilbert L I, Iatrou K and Gill S. Comprehensive molecular insect science. Oxford: Elsevier, 2005, 5: 309–381.

    Chapter  Google Scholar 

  • Oppenoorth F J. Biochemistry and genetics of insecticide resistance. // Kerkut G A, Gilbert L I. Comprehensive insect physiology, biochemistry, and pharmacology. Oxford: Pergamon, 1985, 12: 31–773.

    Google Scholar 

  • Ortelli F, Rossiter L C, Vontas J, et al. Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochem. J., 2003, 373: 957–963.

    Article  PubMed  CAS  Google Scholar 

  • Pasteur N, Raymond M. Insecticide resistance genes in mosquitoes: their mutations, migration, and selection in field populations. J. Hered., 1996, 87: 444–449.

    PubMed  CAS  Google Scholar 

  • Pridgeon J W, Zhang L, Liu N. Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.). Gene, 2003, 314: 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Ranson H, Jensen B, Vilule J M, et al. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol. Biol., 2000, 9: 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Ranson H, Hemingway J. Mosquito glutathione transferases. Methods Enzymol., 2005, 401: 226–241.

    Article  PubMed  CAS  Google Scholar 

  • Sardelis MR, Turell MJ, Dohm D J, et al. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg. Infect. Dis., 2001, 7: 1018–1022.

    Article  PubMed  CAS  Google Scholar 

  • Scott J G. Investigating mechanisms of insecticide resistance: methods, strategies and pitfalls. // Roush R T, Tabashnik B E. Pesticide resistance in arthropods. New York: Chapman and Hall, 1990: 39–57.

    Google Scholar 

  • Scott J G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol., 1999, 29: 757–777.

    Article  PubMed  CAS  Google Scholar 

  • Small G J, Hemingway J. Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol., 2000, 9: 647–653.

    Article  PubMed  CAS  Google Scholar 

  • Soderlund D M, Knipple D C. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol., 2003, 33: 563–577.

    Article  PubMed  CAS  Google Scholar 

  • Taylor M, Feyereisen R. Molecular biology and evolution of resistance of toxicants. Mol. Biol. Evol., 1996, 13: 719–734.

    PubMed  CAS  Google Scholar 

  • Vontas J, et al. Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol. Biol., 2006, 14: 509–521.

    Article  Google Scholar 

  • Whyard S, Downe A E, Walker V K. Characterization of a novel esterase conferring insecticide resistance in the mosquito Culex tarsalis. Arch. Insect Biochem. Physiol., 1995, 29: 329–342.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization, 1999. Report on infectious diseases at: http://www.who.int/infectiousdisease-report/pages/textonly.html

    Google Scholar 

  • World Health Organization, 2000. WHO Expert Committee on Malaria 20th Report. WHO Tech. Rep. Ser. 892, 71.

    Google Scholar 

  • Xu Q, Liu H, Zhang L, et al. Resistance in the mosquito, Culex quinquefasciatus, and possible mechanisms for resistance. Pest Manag. Sci., 2005, 61: 1096–1102.

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Wang H, Zhang L, et al. Kdr allelic variation in pyrethroid resistant mosquitoes, Culex quinquefasciatus (S.). Biochem. Biophys. Res. Commun., 2006a, 345: 774–780.

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Wang H, Zhang L, et al. Sodium channel gene expression associated with pyrethroid resistant house flies and German cockroaches. Gene, 2006b, 379: 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med. Vet. Entomol., 2000, 14: 1–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, Q., Liu, N. (2011). The Development of Pyrethroid Resistance in the Mosquito Culex quinquefasciatus . In: Liu, T., Kang, L. (eds) Recent Advances in Entomological Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17815-3_17

Download citation

Publish with us

Policies and ethics