ORE - A Tool for Repairing and Enriching Knowledge Bases

  • Jens Lehmann
  • Lorenz Bühmann
Conference paper

DOI: 10.1007/978-3-642-17749-1_12

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6497)
Cite this paper as:
Lehmann J., Bühmann L. (2010) ORE - A Tool for Repairing and Enriching Knowledge Bases. In: Patel-Schneider P.F. et al. (eds) The Semantic Web – ISWC 2010. ISWC 2010. Lecture Notes in Computer Science, vol 6497. Springer, Berlin, Heidelberg


While the number and size of Semantic Web knowledge bases increases, their maintenance and quality assurance are still difficult. In this article, we present ORE, a tool for repairing and enriching OWL ontologies. State-of-the-art methods in ontology debugging and supervised machine learning form the basis of ORE and are adapted or extended so as to work well in practice. ORE supports the detection of a variety of ontology modelling problems and guides the user through the process of resolving them. Furthermore, the tool allows to extend an ontology through (semi-)automatic supervised learning. A wizard-like process helps the user to resolve potential issues after axioms are added.

Download to read the full conference paper text

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jens Lehmann
    • 1
  • Lorenz Bühmann
    • 1
  1. 1.AKSW research groupUniversity of LeipzigGermany

Personalised recommendations