Skip to main content

Application of Nonlocal Shell Models to Microtubule Buckling in Living Cells

  • Chapter
  • 1463 Accesses

Abstract

A version of nonlocal elasticity theory is employed to develop a nonlocal shear deformable shell model. The governing equations are based on higher order shear deformation shell theory with a von Kármán-type of kinematic nonlinearity and include small scale effects. These equations are then used to solve buckling problems of microtubules (MTs) embedded in an elastic matrix of cytoplasm subjected to bending. The surrounding elastic medium is modeled as a Pasternak foundation. The thermal effects are also included and the material properties are assumed to be temperature-dependent. The small scale parameter e0a is estimated by matching the buckling curvature of MTs observed from measurements with the numerical results obtained from the nonlocal shear deformable shell model. The numerical results show that buckling loads are decreased with the increasing small scale parameter e0a. The results reveal that the lateral constraint has a significant effect on the buckling moments of a microtubule when the foundation stiffness is sufficiently large.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kis A, Kasas S, Babic B, et al. Nanomechanics of microtubules. Phys Rev Lett, 89: 248101, 2002.

    Article  Google Scholar 

  2. de Pablo P J, Schaap I A T, Mackintosh F C, et al. Deformation and collapse of microtubules on the nanometer scale. Phys Rev Lett, 91: 098101, 2003.

    Article  Google Scholar 

  3. Tuszynski J A, Brown J A and Hawrylak P. Dielectric polarization, electrical conduction, information processing and quantum computation in microtubules. Are they plausible? Phil Trans R Soc Lond A, 356: 1897–1925, 1998.

    Article  Google Scholar 

  4. Pampaloni F, Lattanzi G, Jonas A, et al. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc Natl Acad Sci USA, 103: 10248–10253, 2006.

    Article  Google Scholar 

  5. Tabony J. Microtubules viewed as molecular ant colonies. Biol Cell, 98: 603–617, 2006.

    Article  Google Scholar 

  6. Kawaguchi K, Ishiwata S and Yamashita T. Temperature dependence of the flexural rigidity of single microtubules. Biochem Biophys Res Commun, 366: 637–642, 2008.

    Article  Google Scholar 

  7. Kurachi M, Hoshi M and Tashiro H. Buckling of a single microtubule by optical trapping forces-direct measurement of microtubule rigidity. Cell Motil Cytoskeleton, 30: 221–228, 1995.

    Article  Google Scholar 

  8. Elbaum M, Fygenson D K and Libchaber A. Buckling microtubules in vesicles. Phys Rev Lett, 76: 4078–4081, 1996.

    Article  Google Scholar 

  9. Brangwynne C P, MacKintosh F C, Kumar S, et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol, 173: 733–741, 2006.

    Article  Google Scholar 

  10. Needleman D J, Ojeda-Lopez M A, Raviv U, et al. Radial compression of microtubules and the mechanism of action of taxol and associated proteins. Biophys J, 89: 3410–3423, 2005.

    Article  Google Scholar 

  11. Schaap I A T, Carrasco C, de Pablo P J, et al. Elastic response, buckling, and instability of microtubules under radial indentation. Biophys J, 91: 1521–1531, 2006.

    Article  Google Scholar 

  12. Needleman D J, Ojeda-Lopez M A, Raviv U, et al. Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions. Phys Rev Lett, 93: 198104, 2004.

    Article  Google Scholar 

  13. Li T. A mechanics model of microtubule buckling in living cells. J Biomech, 41: 1722–1729, 2008.

    Article  Google Scholar 

  14. Das M, Levine A J and MacKinstosh F C. Buckling and force propagation along intracellular microtubules. EPL, 84: 18003, 2008.

    Article  Google Scholar 

  15. Jiang H and Zhang J. Mechanics of microtubule buckling supported by cytoplasm. J Appl Mech, 75: 061019, 2008.

    Article  Google Scholar 

  16. Volokh K Y, Vilnay O and Belsky M. Cell cytoskeleton and tensegrity. Biorheology, 39: 63–67, 2002.

    Google Scholar 

  17. Wang C Y, Ru C Q and Mioduchowski A. Orthotropic elastic shell model for buckling of microtubules. Phys Rev E, 74: 52901–52914, 2006.

    Article  Google Scholar 

  18. Yi L J, Chang T C and Ru C Q. Buckling of microtubules under bending and torsion. J Appl Phys, 103: 103516, 2008.

    Article  Google Scholar 

  19. Wade R H, Chretien D and Job D. Characterization of microtubule protofilament numbers: How does the surface lattice accommodate? J Mol Biol, 212: 775–786, 1990.

    Article  Google Scholar 

  20. Shen H S and Zhang C L. Torsional buckling and postbuckling of doublewalled carbon nanotubes by nonlocal shear deformable shell model. Composite Struct, 92: 1073–1084, 2010.

    Article  Google Scholar 

  21. Shen H S and Zhang C L. Nonlocal shear deformable shell model for postbuckling of axially compressed double-walled carbon nanotubes embedded in an elastic matrix. J Appl Mech, 77: 041006, 2010.

    Article  Google Scholar 

  22. Shen H S, Zhang C L and Xiang Y. Nonlocal shear deformable shell model for thermal postbuckling of axially compressed double-walled carbon nanotubes. Philosophical Magazine, 90: 3189–3214, 2010.

    Article  Google Scholar 

  23. Shen L, Shen H S and Zhang C L. Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput Mater Sci, 48: 680–685, 2010.

    Article  Google Scholar 

  24. Shen H S. Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium. Biomech Model Mechanobiol, 9: 345–357, 2010.

    Article  Google Scholar 

  25. Shen H S. Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model. J Theor Biology, 264: 386–394, 2010.

    Article  Google Scholar 

  26. Eringen A C. Nonlocal polar elastic continua. Int J Eng Sci, 10: 1–16, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  27. Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys, 54: 4703–4710, 1983.

    Article  Google Scholar 

  28. Eringen A C and Edelen D G B. On nonlocal elasticity. Int J Eng Sci, 10: 233–248, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  29. Gao Y and Lei F M. Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. Biochem Biophys Res Commun, 387: 467–471, 2009.

    Article  Google Scholar 

  30. Fu Y and Zhang J. Modeling and analysis of microtubules based on a modified couple stress theory. Physica E, 42: 1741–1745, 2010.

    Article  MathSciNet  Google Scholar 

  31. Gao Y and An L. A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm. Physica E, 42: 2406–2415, 2010.

    Article  Google Scholar 

  32. Zhang Y Q, Liu G R and Wang J S. Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B, 70: 205430, 2004.

    Article  Google Scholar 

  33. Wang Q and Varadan V K. Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct, 16: 178–190, 2007.

    Article  Google Scholar 

  34. Reddy J N and Liu C F. A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci, 23: 319–330, 1985.

    Article  MATH  Google Scholar 

  35. Chatterjee S N and Kulkarni S V. Shear correction factors for laminated plates. AIAA Journal, 17: 498–499, 1979.

    Article  Google Scholar 

  36. Chang T, Geng J and Guo X. Chirality-and size-dependent elastic properties of single-walled carbon nanotubes. Appl Phys Lett, 87: 251929, 2005.

    Article  Google Scholar 

  37. Gu B, Mai Y W and Ru C Q. Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing. Acta Mech, 207: 195–209, 2009.

    Article  MATH  Google Scholar 

  38. Chretien D and Wade R H. New data on the microtubule surface lattice. Biol Cell, 71: 161–174, 1991.

    Article  Google Scholar 

  39. Ray S, Meyhofer E, Milligan R A, et al. Kinesin follows the microtubule’s protofilament axis. J Cell Biol, 121: 1083–1093, 1993.

    Article  Google Scholar 

  40. Chretien D and Fuller S D. Microtubules switch occasionally into unfavorable configurations during elongation. J Mol Biol, 298: 663–676, 2000.

    Article  Google Scholar 

  41. Li R and Kardomateas G A. Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity. J Appl Mech, 74: 399–405, 2007.

    Article  MATH  Google Scholar 

  42. Hao M J, Guo X M and Wang Q. Small-scale effect on torsional buckling of multi-walled carbon nanotubes. Eur J Mech A/Solids, 29: 49–55, 2010.

    Article  MathSciNet  Google Scholar 

  43. Takasone T, Juodkazis S, Kawagishi Y, et al. Flexural rigidity of a single microtubule. Jpn J Appl Phys, 41: 3015–3019, 2002.

    Article  Google Scholar 

  44. Wagner O, Zinke J, Dancker P, et al. Viscoelastic properties of f-actin, microtubules, f-actin/a-actinin, and f-actin/hexokinase determined in microliter volumes with a novel nondestructivemethod. Biophys J, 76: 2784–2796, 1999.

    Article  Google Scholar 

  45. Tuszynski J A, Luchko T, Portet S, et al. Anisotropic elastic properties of microtubules. Euro Phys J E, 17: 29–35, 2005.

    Article  Google Scholar 

  46. Kikumoto M, Kurachi M, Tosa V, et al. Flexural rigidity of individual microtubules measured by a buckling force with optical traps. Biophys J, 90: 1687–1696, 2006.

    Article  Google Scholar 

  47. Odde D J, Ma L, Briggs A H, et al. Microtubule bending and breaking in living fibroblast cells. J Cell Sci, 112: 3283–3288, 1999.

    Google Scholar 

  48. Shi Y J, Guo W L and Ru C Q. Relevance of timoshenko-beam model to microtubules of low shear modulus. Physica E, 41: 213–219, 2008.

    Article  Google Scholar 

  49. Gittes F, Mickey B, Nettleton J, et al. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol, 120: 923–934, 1993.

    Article  Google Scholar 

  50. Sirenko Y M, Stroscio M A and Kim K W. Elastic vibration of microtubules in a fluid. Phys Rev E, 53: 1003–1010, 1996.

    Article  Google Scholar 

  51. Jayanna H S and Subramanyam S V. Thermal expansion of gamma irradiated nylon 66 from 10 K to 340 K. J Mater Sci Lett, 13: 1190–1191, 1994.

    Article  Google Scholar 

  52. Wang Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys, 98: 124301, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Shen Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shen, HS. (2011). Application of Nonlocal Shell Models to Microtubule Buckling in Living Cells. In: Li, S., Sun, B. (eds) Advances in Cell Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17590-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17590-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17589-3

  • Online ISBN: 978-3-642-17590-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics