Skip to main content

Adrenergic Regulation and Heritable Arrhythmias: Key Roles of the Slowly Activating Heart I Ks Potassium Channel

  • Chapter
  • First Online:
Book cover Heart Rate and Rhythm

Abstract

The slowly activating delayed rectifier I Ks channel plays a crucial role in heart repolarization and is regulated by β-adrenergic receptor (β-AR) stimulation. I Ks channels are comprised of a pore forming subunit, KCNQ1, as well as an auxiliary subunit, KCNE1, and are regulated by the sympathetic nervous system through KCNQ1 association with AKAP9 (Yotiao): AKAP9 recruits PKA, a phosphatase, adenylate cyclase, and a phosphodiesterase to the channel which enables fine regulation of the phosphorylated state of a key serine residue located in the KCNQ1 N-terminus. This chapter reviews work has elucidated the molecular mechanisms underlying sympathetic regulation of I Ks and the role of mutations of these genes in heritable arrhythmias, and summarizes the direction of current and future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kass RS, Wiegers SE. The ionic basis of concentration-related effects of noradrenaline on the action potential of calf cardiac Purkinje fibres. J Physiol. 1982;322:541–58.

    PubMed  CAS  Google Scholar 

  2. Tsien RW, Giles W, Greengard P. Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibres. Nat New Biol. 1972;240(101):181–3.

    PubMed  CAS  Google Scholar 

  3. Walsh KB, Kass RS. Distinct voltage-dependent regulation of a heart-delayed IK by protein kinases A and C. Am J Physiol. 1991;261(6 Pt 1):C1081–90.

    PubMed  CAS  Google Scholar 

  4. Walsh KB, Kass RS. Regulation of a heart potassium channel by protein kinase A and C. Science. 1988;242(4875):67–9.

    Article  PubMed  CAS  Google Scholar 

  5. Yang WP, Levesque PC, Little WA, Conder ML, Shalaby FY, Blanar MA. KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. Proc Natl Acad Sci USA. 1997;94(8):4017–21.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang ZJ, Jurkiewicz NK, Folander K, Lazarides E, Salata JJ, Swanson R. K+ currents expressed from the guinea pig cardiac IsK protein are enhanced by activators of protein kinase C. Proc Natl Acad Sci USA. 1994;91:1766–70.

    Article  PubMed  CAS  Google Scholar 

  7. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12(1):17–23.

    Article  PubMed  Google Scholar 

  8. Takumi T, Ohkubo H, Nakanishi S. Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science. 1988;242:1042–5.

    Article  PubMed  CAS  Google Scholar 

  9. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, et al. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature. 1996;384(6604):80–3.

    Article  PubMed  CAS  Google Scholar 

  10. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996;384(6604):78–80.

    Article  PubMed  CAS  Google Scholar 

  11. Yang Y, Sigworth FJ. Single-channel properties of IKs potassium channels. J Gen Physiol. 1998;112(6):665–78.

    Article  PubMed  CAS  Google Scholar 

  12. Sesti F, Goldstein SA. Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome. J Gen Physiol. 1998;112(6):651–63.

    Article  PubMed  CAS  Google Scholar 

  13. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, et al. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002;295(5554):496–9.

    Article  PubMed  CAS  Google Scholar 

  14. Chen L, Kurokawa J, Kass RS. Phosphorylation of the A-kinase-anchoring protein Yotiao contributes to protein kinase A regulation of a heart potassium channel. J Biol Chem. 2005;280(36):31347–52.

    Article  PubMed  CAS  Google Scholar 

  15. Kurokawa J, Motoike HK, Rao J, Kass RS. Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci U S A. 2004;101(46):16374–8.

    Article  PubMed  CAS  Google Scholar 

  16. Terrenoire C, Houslay MD, Baillie GS, Kass RS. The cardiac IKS potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem. 2009;284(14):9140–6.

    Article  PubMed  CAS  Google Scholar 

  17. Dessauer CW. Adenylyl cyclase-A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol. 2009;76(5):935–41.

    Article  PubMed  CAS  Google Scholar 

  18. Piggott LA, Bauman AL, Scott JD, Dessauer CW. The A-kinase anchoring protein Yotiao binds and regulates adenylyl cyclase in brain. Proc Natl Acad Sci USA. 2008;105(37):13835–40.

    Article  PubMed  CAS  Google Scholar 

  19. Sampson KJ, Kass RS. Molecular mechanisms of adrenergic stimulation in the heart. Heart Rhythm. 2010;7(8):1151–31.

    Article  PubMed  Google Scholar 

  20. Moss AJ, Kass RS. Long QT syndrome: from channels to cardiac arrhythmias. J Clin Invest. 2005;115(8):2018–24.

    Article  PubMed  CAS  Google Scholar 

  21. Kass RS, Moss AJ. Mutation-specific pharmacology of the long QT syndrome. Handb Exp Pharmacol. 2006;171:287–304.

    Article  PubMed  CAS  Google Scholar 

  22. Moss AJ, Schwartz PJ, Crampton RS, Tzivoni D, Locati EH, MacCluer J, et al. The long QT syndrome: prospective longitudinal study of 328 families. Circulation. 1991;84:1136–44.

    PubMed  CAS  Google Scholar 

  23. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J. 1957;54(1):59–68.

    Article  PubMed  CAS  Google Scholar 

  24. Splawski I, Timothy KW, Vincent GM, Atkinson DL, Keating MT. Molecular basis of the long-QT syndrome associated with deafness. N Engl J Med. 1997;336(22):1562–7.

    Article  PubMed  CAS  Google Scholar 

  25. Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation. 2000;102(10):1178–85.

    PubMed  CAS  Google Scholar 

  26. ten Tusscher KH, Noble D, Noble PJ, Panfilov AV. A model for human ventricular tissue. Am J Physiol Heart Circ Physiol. 2004;286(4):H1573–89.

    Article  PubMed  Google Scholar 

  27. Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol Rev. 2005;85(4):1205–53.

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, et al. Genotype–phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103(1):89–95.

    PubMed  CAS  Google Scholar 

  29. Kurokawa J, Chen L, Kass RS. Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Proc Natl Acad Sci USA. 2003;100(4):2122–7.

    Article  PubMed  CAS  Google Scholar 

  30. Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci USA. 2007;104(52):20990–5.

    Article  PubMed  CAS  Google Scholar 

  31. Kass RS, Moss AJ. Long QT syndrome: novel insights into the mechanisms of cardiac arrhythmias. J Clin Invest. 2003;112(6):810–5.

    PubMed  CAS  Google Scholar 

  32. Restier L, Cheng L, Sanguinetti MC. Mechanisms by which atrial fibrillation-associated mutations in the S1 domain of KCNQ1 slow deactivation of IKs channels. J Physiol. 2008;586(Pt 17):4179–91.

    Article  PubMed  CAS  Google Scholar 

  33. Ellinor PT, Moore RK, Patton KK, Ruskin JN, Pollak MR, Macrae CA. Mutations in the long QT gene, KCNQ1, are an uncommon cause of atrial fibrillation. Heart. 2004;90(12):1487–8.

    Article  PubMed  CAS  Google Scholar 

  34. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299(5604):251–4.

    Article  PubMed  CAS  Google Scholar 

  35. Hong K, Piper DR, Diaz-Valdecantos A, Brugada J, Oliva A, Burashnikov E, et al. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res. 2005;68(3):433–40.

    Article  PubMed  CAS  Google Scholar 

  36. Lundby A, Ravn LS, Svendsen JH, Olesen SP, Schmitt N. KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval. Heart Rhythm. 2007;4(12):1532–41.

    Article  PubMed  Google Scholar 

  37. Lehnart SE, Maier LS, Hasenfuss G. Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev. 2009;14(4):213–24.

    Article  PubMed  CAS  Google Scholar 

  38. Sampson KJ, Terrenoire C, Cervantes DO, Kaba RA, Peters NS, Kass RS. Adrenergic regulation of a key cardiac potassium channel can contribute to atrial fibrillation: evidence from an I Ks transgenic mouse. J Physiol. 2008;586(2):627–37.

    Article  PubMed  CAS  Google Scholar 

  39. Weidmann S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951;115(2):227–36.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Kass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chung, D.Y., Sampson, K.J., Kass, R.S. (2011). Adrenergic Regulation and Heritable Arrhythmias: Key Roles of the Slowly Activating Heart I Ks Potassium Channel. In: Tripathi, O., Ravens, U., Sanguinetti, M. (eds) Heart Rate and Rhythm. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17575-6_24

Download citation

Publish with us

Policies and ethics