Skip to main content

Reconfiguring Chain-Type Modular Robots Based on the Carpenter’s Rule Theorem

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 68))

Abstract

Reconfiguring chain-type modular robots has been considered a difficult problem scaling poorly with increasing numbers of modules. We address the reconfiguration problem for robots in 2D by presenting centralized and decentralized algorithms based on the Carpenter’s Rule Theorem [4]. The theorem guarantees the existence of instantaneous collision-free unfolding motions which monotonically increase the distance between all joint pairs until an open chain is straightened or a closed chain is convexified. The motions can be found by solving a convex program. Compared to the centralized version, the decentralized algorithm utilizes local proximity sensing and limited communications between subsets of nearby modules. Because the decentralized version reduces the number of joint pairs considered in each convex optimization, it is a practical solution for large number of modules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, S., Xiao, L., Mutapcic, A., Mattingley, J.: Notes on decomposition methods (2007)

    Google Scholar 

  2. Casal, A.: Reconfiguration planning for modular self-reconfigurable robots. Ph.D. thesis, Stanford University (2002)

    Google Scholar 

  3. Connelly, R.: Expansive motions (2006)

    Google Scholar 

  4. Connelly, R., Demaine, E., Rote, G.: Straightening polygonal arcs and convexifying polygonal cycles. In: Annual IEEE Symposium on Foundations of Computer Science, vol. 0, p. 432 (2000), http://doi.ieeecomputersociety.org/10.1109/SFCS.2000.892131

  5. Connelly, R., Demaine, E.D., Demaine, M.L., Fekete, S.P., Langerman, S., Mitchell, J.S.B., Ribó, A., Rote, G.: Locked and unlocked chains of planar shapes. In: SCG 2006: Proceedings of the twenty-second annual symposium on Computational geometry, pp. 61–70. ACM, New York (2006), http://doi.acm.org/10.1145/1137856.1137868

    Chapter  Google Scholar 

  6. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  7. Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter. Computer 38(6), 99 (2005), http://dx.doi.org/10.1109/MC.2005.198

    Article  Google Scholar 

  8. Gray, S., Seo, J., White, P., Zeichner, N., Yim, M., Kumar, V.: A toolchain for the design and simulation of foldable programmable matter. In: Proceedings of the ASME International Design Technical Conferences and Computer and Information in Engineering Conference (2010)

    Google Scholar 

  9. Griffith, S.: Growing machines. Ph.D. thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  10. Hawkes, E., An, B., Benbernou, N.M., Tanaka, H., Kim, S., Demaine, E.D., Rus, D., Wood, R.J.: Programmable matter by folding. In: Proceedings of the National Academy of Sciences (2010), doi: 10.1073/pnas.0914069107

    Google Scholar 

  11. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)

    Google Scholar 

  12. Nguyen, A., Guibas, L., Yim, M.: Controlled module density helps reconfiguration planning. In: Algorithmic and Computational Robotics: New Directions: The Fourth Workshop on the Algorithmic Foundations (WAFR). AK Peters, Ltd. (2001)

    Google Scholar 

  13. Rus, D., Vona, M.: Self-reconfiguration planning with compressible unit modules. In: Proceedings of IEEE/RSJ IEEE International Conference on Robotics and Automation, Detroit, vol. 4, pp. 2513–2520 (1999)

    Google Scholar 

  14. Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  15. Shen, W., Will, P.: Docking in self-reconfigurable robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1049–1054 (2001), doi:10.1109/IROS.2001.976307

    Google Scholar 

  16. Tang, X., Thomas, S., Amato, N.: Planning with reachable distances: Fast enforcement of closure constraints. In: IEEE International Conference on Robotics and Automation, pp. 2694–2699 (2007), doi:10.1109/ROBOT.2007.363872

    Google Scholar 

  17. Walter, J., Welch, J., Amato, N.: Distributed reconfiguration of metamorphic robot chains. Distributed Computing 17(2), 171–189 (2004)

    Article  Google Scholar 

  18. White, P.J., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proceedings of IEEE/RSJ International Conference on Robotics and Automation, New Orleans, LA, USA, vol. 3, pp. 2888–2893 (2004)

    Google Scholar 

  19. White, P.J., Posner, M.L., Yim, M.: Strength analysis of miniature folded right angle tetrahedron chain programmable matter. In: Proceedings of IEEE/RSJ International Conference on Robotics and Automation (2010)

    Google Scholar 

  20. Yakey, J., LaValle, S.M., Kavraki, L.E.: Randomized path planning for linkages with closed kinematics chains. IEEE Transactions on Robotics and Automation 17(6), 951–959 (2001)

    Article  Google Scholar 

  21. Yim, M., Duff, D.G., Roufas, K.D.: Polybot: a modular reconfigurable robot. In: Proceedings of IEEE/RSJ IEEE International Conference on Robotics and Automation, vol. 1, p. 514 (2000), http://dx.doi.org/10.1109/ROBOT.2000.844106

  22. Yim, M., White, P.J., Park, M., Sastra, J.: Modular self-reconfigurable robots. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5618–5631. Springer, Heidelberg (2009)

    Google Scholar 

  23. Yim, M., Zhang, Y., Lamping, J., Mao, E.: Distributed control for 3d metamorphosis. Autonomous Robots 10(1), 41 (2001), http://dx.doi.org/10.1023/A:1026544419097

    Article  MATH  Google Scholar 

  24. Zakin, M.: ProgrammableMatter-The Next Revolution in Materials. Military Technology 32(5), 98 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seo, J., Gray, S., Kumar, V., Yim, M. (2010). Reconfiguring Chain-Type Modular Robots Based on the Carpenter’s Rule Theorem. In: Hsu, D., Isler, V., Latombe, JC., Lin, M.C. (eds) Algorithmic Foundations of Robotics IX. Springer Tracts in Advanced Robotics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17452-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17452-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17451-3

  • Online ISBN: 978-3-642-17452-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics