Skip to main content

Path Planning for Groups Using Column Generation

  • Conference paper
Motion in Games (MIG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6459))

Included in the following conference series:

Abstract

In computer games, one or more groups of units need to move from one location to another as quickly as possible. If there is only one group, then it can be solved efficiently as a dynamic flow problem. If there are several groups with different origins and destinations, then the problem becomes \({\cal NP}\)-hard. In current games, these problems are solved by using greedy ad hoc rules, leading to long traversal times or congestions and deadlocks near narrow passages. We present a centralized optimization approach based on Integer Linear Programming. Our solution provides an efficient heuristic to minimize the average and latest arrival time of the units.

This work was partially supported by the itea2 Metaverse1 (www.metaverse1.org) Project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CPLEX 11.0. User’s manual. Technical report, ILOG SA, Gentilly, France (2008)

    Google Scholar 

  2. Bayazit, O., Lien, J.-M., Amato, N.: Better group behaviors in complex environments using global roadmaps. Artificial Life, 362–370 (2002)

    Google Scholar 

  3. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations, 1st edn. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  4. Ford Jr., L., Fulkerson, D.: Constructing maximal dynamic flows from static flows. Operations Research 6, 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  5. Ford Jr., L., Fulkerson, D.: A suggested computation for maximal multi-commodity network flows. Management Science 5, 97–101 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geraerts, R.: Planning short paths with clearance using explicit corridors. In: IEEE International Conference on Robotics and Automation, pp. 1997–2004 (2010)

    Google Scholar 

  7. Ghrist, R., O’Kane, J., LaValle, S.: Pareto optimal coordination on roadmaps. In: International Workshop on the Algorithmic Foundations of Robotics, pp. 171–186 (2004)

    Google Scholar 

  8. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)

    Article  Google Scholar 

  9. Kamphuis, A., Overmars, M.: Finding paths for coherent groups using clearance. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 19–28 (2004)

    Google Scholar 

  10. Karamouzas, I., Heil, P., van Beek, P., Overmars, M.: A predictive collision avoidance model for pedestrian simulation. In: Egges, A. (ed.) MIG 2009. LNCS, vol. 5884, pp. 41–52. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Latombe, J.-C.: Robot Motion Planning. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  12. LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  13. LaValle, S., Hutchinson, S.: Optimal motion planning for multiple robots having independent goals. Transaction on Robotics and Automation 14, 912–925 (1998)

    Article  Google Scholar 

  14. Li, Y.: Real-time motion planning of multiple agents and formations in virtual environments. PhD thesis, Simon Fraser University (2008)

    Google Scholar 

  15. Peng, J., Akella, S.: Coordinating multiple robots with kinodynamic constraints along specified paths. International Journal of Robotics Research 24, 295–310 (2005)

    Article  Google Scholar 

  16. Rabin, S.: AI Game Programming Wisdom 2. Charles River Media Inc., Hingham (2004)

    Google Scholar 

  17. Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21, 25–34 (1987)

    Article  Google Scholar 

  18. Sánchez, G., Latombe, J.-C.: Using a PRM planner to compare centralized and decoupled planning for multi-robot systems. In: IEEE International Conference on Robotics and Automation, pp. 2112–2119 (2002)

    Google Scholar 

  19. Schwartz, J., Sharir, M.: On the piano movers’ problem: III. Coordinating the motion of several independent bodies: The special case of circular bodies moving amidst polygonal obstacles. International Journal of Robotics Research 2, 46–75 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Silver, D.: Cooperative pathfinding. In: Artificial Intelligence for Interactive Digital Entertainment, pp. 117–122 (2005)

    Google Scholar 

  21. Siméon, T., Leroy, S., Laumond, J.-P.: Path coordination for multiple mobile robots: A resolution complete algorithm. IEEE Transactions on Robotics and Automation 18, 42–49 (2002)

    Article  Google Scholar 

  22. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, pp. 1928–1935 (2008)

    Google Scholar 

  23. van den Berg, J., Overmars, M.: Prioritized motion planning for multiple robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2217–2222 (2005)

    Google Scholar 

  24. Wilkinson, W.: An algorithm for universal maximal dynamic flows in a network. Operations Research 19, 1602–1612 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wolsey, L.: Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van den Akker, M., Geraerts, R., Hoogeveen, H., Prins, C. (2010). Path Planning for Groups Using Column Generation. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds) Motion in Games. MIG 2010. Lecture Notes in Computer Science, vol 6459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16958-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16958-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16957-1

  • Online ISBN: 978-3-642-16958-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics