Skip to main content

Sichtbares Spektrum

  • Chapter
Book cover Lichttherapie

Zusammenfassung

Fast alle Lebewesen und so auch der Mensch zeigen rhythmische Veränderungen verschiedenster physiologischer Variablen. Der zirkadiane Rhythmus, also die Tagesrhythmik, wird hauptsächlich beeinflusst durch die äußere Einwirkung des Wechsels von Tag und Nacht. Dieser Rhythmus wird in Zentren des Hypothalamus generiert und beeinflusst seinerseits alle peripheren Zellen. Schlaf als aktiver Erholungsprozess und notwendige Voraussetzung für höhere Leistungen des ZNS wie Gedächtnis und Abstraktion wird initiiert entsprechend des Zusammenspiels der Regulatoren dieses zirkadianen Rhythmus. Eine Störung der Regulation, z. B. durch eine Verschiebung der inneren Uhr und der äußeren Einflüsse wie beim Jetlag kann zu Schlafstörungen und zu negativen Folgen für weitere Körperfunktionen führen. Verschiedene Umgebungseinwirkungen wie Stress, Hitze, Kälte etc. nehmen Einfluss auf den zirkadianen Rhythmus. Dieser wiederum ist eng verknüpft mit der Thermoregulation, dem Stoffwechsel, der Fibrinolyse und den Immunfunktionen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Literatur zu Abschnitt 4.1

  1. Aschoff J, Wever R (1962) Biologische Rhythmen und Regelung. Bad Oeyenhausener Gespräche 5: 1–15

    Google Scholar 

  2. Autenrieth JH (1801) Handbuch der empirischen menschlichen Physiologie. Tübingen: Heerbrandt

    Google Scholar 

  3. Prout W (1813) Observations on the quantity of carbonic acid gas emitted from lungs during respiration, at different times and during different circumstances. Thomsons Ann Phil 2: 328

    Google Scholar 

  4. Gierse A (1842) Quaemiam sit ratio caloris organic. Dissertation, Universität Halle

    Google Scholar 

  5. Juergensen T (1873) Die Körperwärme des gesunden Menschen. Leipzig

    Google Scholar 

  6. Aschoff J, Wever R (1962) Spontanperiodik des Menschen bei Ausschluss aller Zeitgeber. Naturwissenschaften 49: 337–342

    Google Scholar 

  7. Halberg F, Siffre M, Engeli M, Hillmann D, Reinberg A (1965) Etude en librecours des rythmes circadien du pouls, de l’alternance veillesommeil et de l’estimation du temps pendant les deux mois de séjour souterrain d’un homme adulte jeune. CR Acad Sci (Paris) 260: 1259–1262

    Google Scholar 

  8. Edgar D (1996) Circadian control of sleep/wakefulness: implications in shiftwork and therapeutic strategies. In: Shiraki K, Sagawa S (eds.) Physiological basis of occupational health: stressful environments. Amsterdam: Academic Publishing, S. 253–265

    Google Scholar 

  9. Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4: 649–661

    Google Scholar 

  10. Levi F, Altinok A, Clairambault J, Goldbeter A (2008) Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Philos Transact A Math Phys Eng Sci 366: 3575–3598

    Google Scholar 

  11. Moore-Ede MCS, Fuller C (1982) The Clocks that Time Us. Cambridge: Harvard University Press

    Google Scholar 

  12. Klein DC, Moore RY (1979) Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res 174(2): 245–262

    Google Scholar 

  13. Harrington ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 21(5): 705–727

    Google Scholar 

  14. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070–3

    Google Scholar 

  15. Lockley SW, Brainard GC, Czeisler CA (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 88(9): 4502–4505

    Google Scholar 

  16. Jin X, von Gall C, Pieschl RL et al. (2003) Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 23(3): 1054–1060

    Google Scholar 

  17. Czeisler CA, Weitzman E, Moore-Ede MC, Zimmerman JC, Knauer RS (1980) Human sleep: its duration and organization depend on its circadian phase. Science 210(4475): 1264–1267

    Google Scholar 

  18. Borbely AA (1980) Sleep: circadian rhythm vs. recovery process. In: Koukkou ML, Angst J (eds.) Functional States of the Brain: Their Determinants. Amsterdam: Elsevier, p. 151–161

    Google Scholar 

  19. Waterhouse J, Drust B,Weinert D, Edwards B,GregsonW, Atkinson G et al. (2005) The circadian rhythm of core temperature: origin and some implications for exercise performance. Chronobiol Int 22: 205–23

    Google Scholar 

  20. Krauchi K, Cajochen C, Werth E, Wirz-Justice A (2000) Functional link between distal vasodilation and sleep-onset latency? Am J Physiol Regul Integr C Physiol 278: 741–8

    Google Scholar 

  21. Cizza G, Skarulis M, Mignot E (2005) A link between short sleep and obesity: building the evidence for causation. Sleep 28: 1217–20

    Google Scholar 

  22. Gangwisch JE et al. (2006) Short sleep duration as a risk factor for hypertension: Analyses of the first National Health and Nutrition Examination Survey. Hypertension 47: 833–839

    Google Scholar 

  23. Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr, Vitiello MV, Zhdanova IV; American Academy of Sleep Medicine (2007) Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review. Sleep 30(11): 1484–501

    Google Scholar 

  24. Regestein QR, Monk TH (1995) Delayed sleep phase syndrome: a review of its clinical aspects. Am J Psychiatry 152(4): 602–608

    Google Scholar 

  25. Weitzman ED, Czeisler CA, Coleman RM et al. (1981) Delayed sleep phase syndrome. A chronobiological disorder with sleep-onset insomnia. Arch Gen Psychiatry 38(7): 737–746

    Google Scholar 

  26. Schrader H, Bovim G, Sand T (1993) The prevalence of delayed and advanced sleep phase syndromes. J Sleep Res 2(1): 51–55

    Google Scholar 

  27. Crowley SJ, Acebo C, Carskadon MA (2007) Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Med 8(6): 602–612

    Google Scholar 

  28. Aoki H, Ozeki Y, Yamada N (2001) Hypersensitivity of melatonin suppression in response to light in patients with delayed sleep phase syndrome. Chronobiol Int 18(2): 263–271

    Google Scholar 

  29. Ozaki S, Uchiyama M, Shirakawa S, Okawa M (1996) Prolonged interval from body temperature nadir to sleep offset in patients with delayed sleep phase syndrome. Sleep 19(1): 36–40

    Google Scholar 

  30. Morgenthaler TI, Lee-Chiong T, Alessi C et al. (2007) Standards of Practice Committee of the American Academy of Sleep Medicine. Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. An American Academy of Sleep Medicine report. Sleep 30(11): 1445–1459

    Google Scholar 

  31. Lewy AJ (1983) Effects of light on human melatonin production and the human circadian system. Prog Neuropsychopharmacol Biol Psychiatry 7(4–6): 551–556

    Google Scholar 

  32. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210: 1267–9

    Google Scholar 

  33. Czeisler CA, Allan JS, Strogatz SH et al. (1986) Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake cycle. Science 233: 667–71

    Google Scholar 

  34. Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C (2000) Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol 526 Pt 3: 695–702

    Google Scholar 

  35. Duffy JF, Wright KP Jr (2005) Entrainment of the human circadian system by light. J Biol Rhythms 20: 326–38

    Google Scholar 

  36. Gronfier C, Wright KP Jr, Kronauer RE, Jewett ME, Czeisler CA (2004) Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. Am J Physiol Endocrinol Metab 287: E174–81

    Google Scholar 

  37. Rosenthal NE, Joseph-Vanderpool JR, Levendosky AA et al. (1990) Phase-shifting effects of bright morning light as treatment for delayed sleep phase syndrome. Sleep 13(4): 354–361

    Google Scholar 

  38. Lewy AJ, Ahmed S, Jackson JML, Sack RL (1992) Melatonin shifts human circadian rhythms according to a phaseresponse curve. Chronobiol Int 9(5): 380–392

    Google Scholar 

  39. Reid K, Zee PC (2009) Circadian Rhythm Disorders. Semin Neurol 29: 393–405

    Google Scholar 

  40. Ando K, Kripke DF, Ancoli-Israel S (1995) Estimated prevalence of delayed and advanced sleep phase syndromes. Sleep Res 24: 509

    Google Scholar 

  41. Reid KJ, Chang AM, Dubocovich ML, Turek FW, Takahashi JS, Zee PC (2001) Familial advanced sleep phase syndrome. Arch Neurol 58(7): 1089–1094

    Google Scholar 

  42. Jones CR, Campbell SS, Zone SE et al. (1999) Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5(9): 1062–1065

    Google Scholar 

  43. Campbell SS, Dawson D, Anderson MW (1993) Alleviation of sleep maintenance insomnia with timed exposure to bright light. J Am Geriatr Soc 41(8): 829–836

    Google Scholar 

  44. American Academy of Sleep Medicine (2005) ICSD-2. The International Classification of Sleep Disorders: Diagnostic and Coding Manual. 2nd ed. Westchester, IL: American Academy of Sleep Medicine

    Google Scholar 

  45. Eliott AL, Mills JN, Waterhouse JM (1971) A man with too long a day. J Physiol 212(2): 30P–31P

    Google Scholar 

  46. Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H (1992) Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab 75(1): 127–134

    Google Scholar 

  47. Ayalon L, Borodkin K, Dishon L, Kanety H, Dagan Y (2007) Circadian rhythm sleep disorders following mild traumatic brain injury. Neurology 68(14): 1136–1140

    Google Scholar 

  48. Czeisler CA, Shanahan TL, Klerman EB et al. (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med 332(1): 6–11

    Google Scholar 

  49. Sack RL, Brandes RW, Kendall AR, Lewy AJ (2000) Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med 343(15): 1070–1077

    Google Scholar 

  50. Akerstedt T, Torsvall L (1981) Shift work. Shift-dependent wellbeing and individual differences. Ergonomics 24(4): 265–273

    Google Scholar 

  51. Härmä MI, Hakola T, Akerstedt T, Laitinen JT (1994) Age and adjustment to night work. Occup Environ Med 51(8): 568–573

    Google Scholar 

  52. Presser HB (1999) Towards a 24-hour economy. Science 284: 1778–1779

    Google Scholar 

  53. Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T (2004) Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 27(8): 1453–1462

    Google Scholar 

  54. Akerstedt T (1995) Work hours, sleepiness and the underlying mechanisms. J Sleep Res 4(S2): 15–22

    Google Scholar 

  55. Moore-Ede MC, Richardson GS (1985) Medical implications of shift work. Ann Rev Med 36: 607–17

    Google Scholar 

  56. Waterhouse J, Akerstedt T, Lennernas M, Arendt J (1999) Chronobiology and nutrition: internal and external factors. Can J Diabetes Care 23(Suppl 2): 82–8

    Google Scholar 

  57. Costa G (1996) The impact of shift and night work on health. Appl Ergon 27(1): 9–16

    Google Scholar 

  58. Segawa K, Nakazawa S, Tsukamoto Y et al. (1987) Peptic ulcer is prevalent among shift workers. Digest Dis Sci 32: 449–453

    Google Scholar 

  59. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93: 1563–1568

    Google Scholar 

  60. Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med 58: 747–752

    Google Scholar 

  61. Lennernas M, Akerstedt T, Hambraeus L (1994) Nocturnal eating and serum cholesterol in 3 shift workers. Scand J Work Environ Hea 20: 401–406

    Google Scholar 

  62. Rizza RA, Mandarino LJ, Gerich JE (1982) Cortisol-induced insulin resistance in man: Impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor defect of insulin action. J Clin Endocrinol Metab 54:131–138

    Google Scholar 

  63. Lipovcan K, Larsen P, Zganec N (2004) Quality of life, life satisfaction and happiness in shift and non-shift workers. Revista De Saude Publica 38: 3–10

    Google Scholar 

  64. Härmä M (1996) Ageing, physical fitness and shift work tolerance. Appl Ergon 27: 25–29

    Google Scholar 

  65. Harma MI, llmarinen J, Knauth P, Rutenfranz J, Hanninen P (1988) Physical training intervention in shift-workers. 1. The effects of intervention on fitness, fatigue, sleep, and psychomotor symptoms. Ergonomics 31: 39–50

    Google Scholar 

  66. Paper Youngstedt SD (2005) Effects of exercise on sleep. Clin Sports Med 24: 355–365

    Google Scholar 

  67. Atkinson G, Davenne D (2007) Relationships between sleep, physical activity and human health. Physiol Behav 90(2–3): 229–35

    Google Scholar 

  68. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106(11): 4453–8

    Google Scholar 

  69. Novak CM, Kotz CM, Levine JA (2006) Central orexin sensitivity, physical activity, and obesity diet-induce obese and diet-resistant rats. Am J Physiol 290: 396–403

    Google Scholar 

  70. Burgess HJ, Sharkey KM, Eastman CI (2002) Bright light, dark and melatonin can promote circadian adaptation in night shift workers. Sleep Med Rev 6(5): 407–420

    Google Scholar 

  71. Dawson D, Campbell SS (1991) Timed exposure to bright light improves sleep and alertness during simulated night shifts. Sleep 14(6): 511–516

    Google Scholar 

  72. Boivin DB, James FO (2002) Circadian adaptation to night-shift work by judicious light and darkness exposure. J Biol Rhythms 17(6): 556–567

    Google Scholar 

  73. Baehr EK, Fogg LF, Eastman CI (1999) Intermittent bright light and exercise to entrain human circadian rhythms to night work. Am J Physiol 277(6 Pt 2): R1598–R1604

    Google Scholar 

  74. Eastman CI, Stewart KT, Mahoney MP, Liu L, Fogg LF (1994) Dark goggles and bright light improve circadian rhythm adaptation to night-shift work. Sleep 17(6): 535–543

    Google Scholar 

  75. Boulos Z, Campbell SS, Lewy AJ, Terman M, Dijk DJ, Eastman CI (1995) Light treatment for sleep disorders: consensus report. VII. Jet lag. J Biol Rhythms 10(2): 167–176

    Google Scholar 

  76. Michalik A, Bobiński R (2009) „Jet-lag“ – pathophysiology and methods of prevention and treatment. Przegl Epidemiol 63(4): 589–95

    Google Scholar 

  77. Waterhouse J, Reilly T, Atkinson G, Edwards B (2007) Jet lag: trends and coping strategies. Lancet 369: 1117–29

    Google Scholar 

  78. Waterhouse J, Edwards B, Nevill A et al. (2002) Identifying some determinants of „jet lag“ and its symptoms: a study of athletes and other travellers. British journal of sports medicine 36: 54–60

    Google Scholar 

  79. Moline, ML, Pollak, CP, Monk, TH et al. (1992) Age-related differences in recovery from simulated jet lag. Sleep 15: 28–40

    Google Scholar 

  80. Daan S, Lewy AJ (1984) Scheduled exposure to daylight: a potential strategy to reduce ‘‘jet lag’’ following transmeridian flight. Psychopharmacol Bull 20(3): 566–568

    Google Scholar 

  81. Sack RL (2010) Clinical practice. Jet lag. N Engl J Med 362(5): 440–7

    Google Scholar 

  82. Smith MR, Cullnan EE, Eastman CI (2008) Shaping the light/dark pattern for circadian adaptation to night shift work. Physiol Behav 95: 2008449–56

    Google Scholar 

  83. Takahashi T, Sasaki M, Itoh H et al. (1999) Re-entrainment of circadian rhythm of plasma melatonin on an 8-h eastward flight. Psychiatry Clin Neurosci 53: 257–60

    Google Scholar 

  84. Herxheimer A, Petrie KJ (2002) Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev 2: CD001520

    Google Scholar 

  85. Horne J (1988) Why we sleep. The functions of sleep in humans and other mammals. Oxford: Oxford University Press, p. 319

    Google Scholar 

  86. Ohnaka T, Tochihara Y, Kanda K (1995) Body movements of the elderly during sleep and thermal conditions in bedrooms in summer. Appl Human Sci 14: 89–93

    Google Scholar 

  87. LedransM, Pirard P, Tillaut H, Vandentorren S, Suzan F, Salines G et al. (2004) La canicule d’août 2003: que s’est-il passé ? Rev Prat 54: 1289–97

    Google Scholar 

  88. Putkonen PTS, Elomaa E, Kotilainen PV (1973) Increase in delta (3 + 4) sleep after heat stress in sauna. Scand J Clin Lab Invest 31(Suppl 130): 19

    Google Scholar 

  89. Horne JA, Reid AJ (1985) Night-time sleep EEG changes following body heating in a warm bath. Electroencephalogr Clin Neurophysiol 60: 154–7

    Google Scholar 

  90. Kendel K, Schmidt-Kessen W (1973) The influence of room temperature on night sleep in man (Polygraphic night-sleep recordings in the climatic chamber). Sleep 1973. Basel: Karger, p. 423–5

    Google Scholar 

  91. Hénane R, Buguet A, Roussel B, Bittel J (1977) Variations in evaporation and body temperatures during sleep in man. J Appl Physiol Respir Environ Exercise Physiol 42: 50–5

    Google Scholar 

  92. Buguet A, Cespuglio R, Radomski MW (1998) Sleep and stress in man: an approach through exercise and exposure to extreme environments. Can J Physiol Pharmacol 76: 553–61

    Google Scholar 

  93. Haskell EH, Palca JW, Walker JM, Berger RJ, Heller HC (1981) Metabolism and thermoregulation during stages of sleep in humans exposed to heat and cold. J Appl Physiol Respir Environ Exercise Physiol 51: 948–54

    Google Scholar 

  94. Sewitch DE, Kittrell EMV, Kupfer DJ, Reynolds CF (1986) Body temperature and sleep architecture in response to mild cold stress in women. Physiol Behav 36: 951–7

    Google Scholar 

  95. Palca JW, Walker JM, Berger RJ (1986) Thermoregulation, metabolism, and stages of sleep in cold-exposed men. J Appl Physiol 61: 940–7

    Google Scholar 

  96. Buguet AGC, Livingstone SD, Reed LD, Limmer RE (1976) EEG patterns and body temperatures in man during sleep in Arctic winter nights. Int J Biometeor 20: 61–9

    Google Scholar 

  97. Radomski MW, Boutelier C (1982) Hormone response of normal and intermittent cold-preadapted humans to continuous cold. J Appl Physiol 53: 610–6

    Google Scholar 

  98. Natani K, Shurley JT, Pierce CM, Brooks RE (1970) Long-term changes in sleep patterns in men on the south polar plateau. Arch Intern Med 125: 655–9

    Google Scholar 

  99. Buguet A, Rivolier J, Jouvet M (1987) Human sleep patterns in Antarctica. Sleep 10: 374–82

    Google Scholar 

  100. Burgess KR, Johnson P, Edwards N, Cooper J (2004) Acute mountain sickness is associated with sleep desaturation at high altitude. Respirology 9: 485–92

    Google Scholar 

  101. Burgess KR, Cooper J, Rice A,Wong K, Kinsman T, Hahn A (2006) Effect of simulated altitude during sleep on moderate-severity OSA. Respirology 11: 62–9

    Google Scholar 

  102. American Academy of Sleep Medicine (2005) International Classification of Sleep Disorders. Diagnostic and Coding Manual. 2nd Edition. Westchester, Illinois: American Academy of Sleep Medicine

    Google Scholar 

  103. Reite M, Jackson D, Cahoon RL, Weil JV (1975) Sleep physiology at high altitude. Electroencephalogr Clin Neurophysiol 38:463–71

    Google Scholar 

  104. Kinsman TA, Hahn AG, Gore CJ, Martin DT, Chow CM (2003) Sleep quality responses to atmospheric variation: case studies of two elite female cyclists. J Sci Med Sport 6: 436–42

    Google Scholar 

  105. Buguet A, Pivot A, Montmayeur A, Tapie P (1994) Ambulatory sleep-wake recording in an acclimatized mountaineer over 8 days at high altitude. J Wilderness Med 5: 1–6

    Google Scholar 

  106. Plywaczewski R, Wu TY, Wang XQ, Cheng HW, Sliwinski P, Zielinski J (2003) Sleep structure and periodic breathing in Tibetans and Han at simulated altitude of 5000 m. Respir Physiol Neurobiol 136: 187–97

    Google Scholar 

  107. Seo YJ, Matsumoto K, Park Y, Mohri M, Matsuoka S (1999) Sleep patterns during 20-m nitrox saturation dives. Psychiatr Clin Neurosci 53: 125–7

    Google Scholar 

  108. Rostain JC, Gardette-Chauffour MC, Gourret JP, Naquet R (1988) Sleep disturbances in man during different compression profiles up to 62 bars in helium–oxygen mixture. Electroencephalogr Clin Neurophysiol 69: 127–35

    Google Scholar 

  109. Mallis MM, DeRoshia CW (2005) Circadian rhythms, sleep, and performance in space. Aviat Space Environ Med 76(6 Suppl): B94–107

    Google Scholar 

  110. Santy PA, Kapanka H, Davis JR, Stewart DF (1988) Analysis of sleep on Shuttle missions. Aviat Space Environ Med 59(11 Pt 1): 1094–7

    Google Scholar 

  111. Putcha L, Berens KL, Marshburn TH, Ortega HJ, Billica RD (1999) Pharmaceutical use by U.S. astronauts on space shuttle missions. Aviat Space Environ Med 70(7): 705–8

    Google Scholar 

  112. Gundel A, Polyakov VV, Zulley J (1997) The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res 6(1):1–8

    Google Scholar 

  113. Frost JD Jr, Shumate WH, Salamy JG, Booher CR (1976) Sleep monitoring: the second manned Skylab mission. Aviat Space Environ Med 47(4): 372–82

    Google Scholar 

  114. Zulley J, Wever R, Aschoff J (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch 391(4): 314–8

    Google Scholar 

  115. Belenky G, Wesensten NJ, Thorne DR, Thomas ML, Sing HC, Redmond DP, Russo MB, Balkin TJ (2003) Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res 12(1): 1–12

    Google Scholar 

  116. Van Dongen HP, Maislin G, Mullington JM, Dinges DF (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26(2): 117–26

    Google Scholar 

  117. Mollicone DJ et al. (2007) Optimizing sleep/wake schedules in space: sleep during chronic nocturnal sleep restriction with and without diurnal naps. Acta Astronautica 60: 354–361

    Google Scholar 

  118. Akerstedt T, Folkard S, Portin C (2004) Predictions from the three-process model of alertness. Aviat Space Environ Med 75(3 Suppl): A75–83

    Google Scholar 

  119. Ockels W, Stoewer H (1990) The ESA astronaut sleep restraint—its development and use onboard Spacelab and MIR. ESA Bull 61: 71–6

    Google Scholar 

  120. Martin BJ (1981) Effect of sleep deprivation on tolerance of prolonged exercise. Eur J Appl Physiol Occup Physiol 47: 345–354. doi:10.1007/BF02332962

    Google Scholar 

  121. Dewasmes G, Bothorel B, Hoeft A, Candas V (1993) Regulation of local sweating in sleep-deprived exercising humans. Eur J Appl Physiol Occup Physiol 66: 542–546. doi:10.1007/BF00634307

    Google Scholar 

  122. Oliver SJ, Costa RJ, Laing SJ, Bilzon JL, Walsh NP (2009) One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol 107(2): 155–61

    Google Scholar 

  123. Gais S, Plihal W, Wagner U, Born J (2000) Early sleep triggers memory for early visual discrimination skills. Nat Neurosci 3(12): 1335–9

    Google Scholar 

  124. Marquet P, Schwartz S, Passingham R, Frith C. (2003) Sleep-related consolidation of visuomotor skill: brain mechanism as assessed by functional magnetic resonance imaging. J Neurosci 23: 1432–1440

    Google Scholar 

  125. Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430(6995): 78–81

    Google Scholar 

  126. Silva RH, Abílio VC, Takatsu AL et al. (2004) Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 46(6): 895–903

    Google Scholar 

  127. Scheer FA, Shea TJ, Hilton MF, Shea SA (2008) An endogenous circadian rhythm in sleep inertia results in greatest cognitive impairment upon awakening during the biological night. J Biol Rhythms 23(4): 353–61

    Google Scholar 

  128. Mohren DC, Jansen NW, Kant IJ, Galama J, van den Brandt PA, Swaen GM (2002) Prevalence of common infections among employees in different work schedules. J Occup Environ Med 44: 1003–1011

    Google Scholar 

  129. Everson CA (1993) Sustained sleep deprivation impairs host defense. Am J Physiol 265: R1148–R1154

    Google Scholar 

  130. Toth LA, Tolley EA, Krueger JM (1993) Sleep as a prognostic indicator during infectious disease in rabbits. Proc Soc Exp Biol Med 203: 179–192

    Google Scholar 

  131. Hayashi M, Shimba S, Tezuka M (2007) Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull 30: 621–626

    Google Scholar 

  132. Bollinger T, Bollinger A, Oster H, Solbach W (2010) Sleep, Immunity, and Circadian Clocks: A Mechanistic Model. Gerontology 56(6): 574–80

    Google Scholar 

  133. Pollard LC, Choy EH, Gonzalez J, Khoshaba B, Scott DL (2006) Fatigue in rheumatoid arthritis reflects pain, not disease activity. Rheumatology (Oxford) 45: 885–889

    Google Scholar 

  134. Vgontzas AN, Zoumakis E, Lin HM, Bixler EO, Trakada G, Chrousos GP (2004) J Clin Endocrinol Metab 89: 4409–4413

    Google Scholar 

  135. Cavadini G, Petrzilka S, Kohler P, Jud C, Tobler I, Birchler T, Fontana A (2007) TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc Natl Acad Sci USA 104(31): 12843–8

    Google Scholar 

  136. Andreotti F, Kluft C (1991) Circadian variation of fibrinolytic activity in blood. Chronobiol Int 8(5): 336–51

    Google Scholar 

  137. van Diest R, Hamulyák K, Kop WJ, van Zandvoort C, Appels A (2002) Diurnal variations in coagulation and fibrinolysis in vital exhaustion. Psychosom Med 64(5): 787–92

    Google Scholar 

  138. Levi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47: 593–628

    Google Scholar 

  139. Filipski E, Subramanian P, Carrière J, Guettier C, Barbason H, Lévi F (2009) Circadian disruption accelerates liver carcinogenesis in mice. Mutat Res 680(1–-2): 95–105

    Google Scholar 

  140. Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111: 41–50

    Google Scholar 

  141. Inoue H, Seitz HK (2001) Viruses and alcohol in the pathogenesis of primary hepatic carcinoma. Eur J Cancer Prev 10: 107–110

    Google Scholar 

Literatur zu Abschnitt 4.2

  1. Anderson JL, Glod CA, Dai J et al. (2009) Lux vs. wavelength in light treatment of Seasonal Affective Disorder. Psychiatr Scand 120(3): 203–12

    Google Scholar 

  2. Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46: 1309–1320

    Google Scholar 

  3. Benedetti F, Colombo C, Pontiggia A, Bernasconi A, Florita M, Smeraldi E (2003) Morning light treatment hastens the antidepressant effect of citalopram: a placebo-controlled trial. J Clin Psychiatry 64: 648–653

    Google Scholar 

  4. Desan PH, Weinstein AJ, Michalak EE et al. (2007) A controlled trial of the Litebook light-emitting diode (LED) light therapy device for treatment of Seasonal Affective Disorder (SAD). BMC Psychiatry 7(7): 38

    Google Scholar 

  5. Depression Guideline Panel (1993) Depression in Primary Care: Treatment of Major Depression Volume 2. Agency for Health Care Policy and Research, HHS, AHCPR Publication NO. 93–0551. U.S. Government Printing Office, Washington DC

    Google Scholar 

  6. Epperson CN, Terman JS, Hanusa BH, Oren DA, Peindl KS, Wisner KL (2004) Randomized clinical trial of bright light therapy for antepartum depression: preliminary findings. J Clin Psychiatry 65(3): 421–5

    Google Scholar 

  7. Even C, Schröder CM, Friedman S, Rouillon F (2008) Efficacy of light therapy in nonseasonal depression: a systematic review. J Affect Disord 108(1–2): 11–23

    Google Scholar 

  8. Glickman G, Hanifin JP, Rollag MD et al. (2003) Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans. J Biol Rhythms 18(1): 71–9

    Google Scholar 

  9. Golden RN, Gaynes BN, Ekstrom RD, Hamer RM, Jacobsen FM, Suppes T, Wisner KL, Nemeroff CB (2005) The efficacy of light therapy in the treatment of mood disorders: a review and metaanalysis of the evidence. Am J Psychiatry 162: 656–662

    Google Scholar 

  10. Goldman BD, Darrow JM (1983) The pineal gland and mammalian photoperiodism. Neuroendocrinology 37: 386–396

    Google Scholar 

  11. Graf A, Wallner C, Schubert V, Willeit M et al. (2001) The effects of light therapy on mini-mental state examination scores in demented patients. Biol Psychiatry 50 : 725–727

    Google Scholar 

  12. Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4: 97–110

    Google Scholar 

  13. Kripke DF, Mullaney DJ, Atkinson M, Wolf S (1978) Circadian rhythm disorders in manic-depressives. Biol Psychiatry 13(3): 335–51

    Google Scholar 

  14. Kripke DF (1998) Light treatment for nonseasonal depression: speed, efficacy, and combined treatment. J Affect Disord 49(2): 109–17

    Google Scholar 

  15. Lam RW, Levitt AJ, Levitan RD, Enns MW, Morehouse R, Michalak EE, Tam EM (2006) The Can-SAD study: a randomized controlled trial of the effectiveness of light therapy and fluoxetine in patients with winter seasonal affective disorder. Am J Psychiatry 163(5): 805–12

    Google Scholar 

  16. Lam RW, Tam EM, Shiah IS et al. (2000) Effects of light therapy on suicidal ideation in patients with winter depression. J Clin Psychiatry 61: 30–32

    Google Scholar 

  17. Lambert GW, Reid DC, Kaye DM, Jennings GL, Esler MD (2002) Effect of sunlight and season on serotonin turnover in the brain. Lancet 360: 1840–1842

    Google Scholar 

  18. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210: 1267–1269

    Google Scholar 

  19. Martiny K (2004) Adjunctive bright light in non-seasonal major depression. Acta Psychiatr Scand 110 (Suppl.): 1–28

    Google Scholar 

  20. Phipps-Nelson J, Redman JR, Dijk DJ, Rajaratnam SM (2003) Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance. Sleep 26: 695–700

    Google Scholar 

  21. Praschak-Rieder N, Willeit M, Wilson AA et al. (2008) Seasonal Variation in Human Brain Serotonin Transporter Binding. Arch Gen Psychiatry 65(9): 1072–8

    Google Scholar 

  22. Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, Mueller PS, Newsome DA, Wehr TA (1984) Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 41(1): 72–80

    Google Scholar 

  23. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA et al. (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163(11): 1905–17

    Google Scholar 

  24. Sit D, Wisner KL, Hanusa BH et al. (2007) Light therapy for bipolar disorder: a case series in women. Bipolar Disord 9(8): 918–27

    Google Scholar 

  25. Srinivasan V, Smits M, Spence W, Lowe AD, Kayumov L, Pandi-Perumal SR, Parry B, Cardinali DP (2006) Melatonin in mood disorders. World J Biol Psychiatry 7(3): 138–51

    Google Scholar 

  26. Staedt J, Pless-Steinkamp C, Herfeld F et al. (2009) Einfluss erhöhter Umgebungslichtintensität auf die Verweildauer von stationär behandelten depressiven Patienten. Nervenheilkunde 28: 223–226

    Google Scholar 

  27. Staedt J, Riemann D (2007) Zirkadiane Rhythmik und Chronobiologie. In Staedt J, Riemann D (Hrsg.) Diagnostik und Therapie von Schlafstörungen. Stuttgart: Kohlhammer, S. 105–126

    Google Scholar 

  28. Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26(40): 10292–10298

    Google Scholar 

  29. Terman JS, Terman M, Lo ES, Cooper TB (2001) Circadian time of morning light administration and therapeutic response in winter depression. Arch Gen Psychiatry 58: 69–75

    Google Scholar 

  30. Terman M, Terman JS (1999) Bright light therapy: side effects and benefits across the symptom spectrum. J Clin Psychiatry 60: 799–808

    Google Scholar 

  31. Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 535: 261–267

    Google Scholar 

  32. Tuunainen A, Kripke DF, Endo T (2004) Light therapy for non-seasonal depression (Cochrane Review). Cochrane Library, Issue 2

    Google Scholar 

  33. Vandewalle G, Schmidt C, Albouy G, Sterpenich V, Darsaud A, Rauchs G, Berken PY, Balteau E, Degueldre C, Luxen A, Maquet P, Dijk DJ (2007) Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem. PLoS One 28;2(11): e1247

    Google Scholar 

  34. Wesemann W, Rotsch M, Schulz E, Sturm G, Zöfel P (1986) Circadian rhythm of serotonin binding in rat brain. Effect of the light-dark cycle. Chronobiol Int 3(2): 135–9

    Google Scholar 

  35. Wirz-Justice A, Benedetti F, Berger M et al. (2005) Chronotherapeutics (light and wake therapy) in affective disorders. Psychol Med 35: 939–944

    Google Scholar 

  36. Wirz-Justice A, Staedt J (2008) Lichttherapie – nicht nur bei Winterdepressionen. Schweizer Zeitschrift für Neurologie & Psychiatrie 1: 1–7

    Google Scholar 

  37. Wirz-Justice A., Benedetti F, Terman M (2009) Chronotherapeutics for depression. A Clinician’s Manual for Light and Wake Therapy. Basel: Karger

    Google Scholar 

  38. Wirz-Justice A, Bader A, Frisch U et al. (2011) A randomized, double-blind, placebo-controlled study of light therapy for antepartum depression. J Clin Psychiatry 72(7): 986–993

    Google Scholar 

  39. Wright H, Lack L (2001) Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol Int 18: 801–808

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krause, R., Stange, R. (2012). Sichtbares Spektrum. In: Krause, R., Stange, R. (eds) Lichttherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16939-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16939-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16938-0

  • Online ISBN: 978-3-642-16939-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics