Skip to main content

Hyaluronan and the Aggregating Proteoglycans

  • Chapter
  • First Online:

Part of the book series: Biology of Extracellular Matrix ((BEM))

Abstract

Proteoglycans that interact specifically with hyaluronan are known as the “hyalectins”. This family includes aggrecan, versican, neurocan, and brevican. These proteoglycans form macromolecular complexes with hyaluronan and contribute to the structural and mechanical stability of different tissues. The synthesis and turnover of the individual components of these complexes are highly regulated. In addition, different parts of these complexes interact with cells and influence cellular phenotype. Specific qualitative and quantitative changes take place in these macromolecules during development and disease and, in part, regulate key events that determine normal and pathological tissue phenotype. This chapter reviews both past and present evidence for the critical role that these ECM components play in the biology and pathology of human tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adair-Kirk TL, Senior RM (2008) Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol 40:1101–1110

    CAS  PubMed  Google Scholar 

  • Ang LC, Zhang Y, Cao L, Yang BL, Young B, Kiani C, Lee V, Allan K, Yang BB (1999) Versican enhances locomotion of astrocytoma cells and reduces cell adhesion through its G1 domain. J Neuropathol Exp Neurol 58:597–605

    CAS  PubMed  Google Scholar 

  • Apte SS (2004) A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cell Biol 36:981–985

    CAS  PubMed  Google Scholar 

  • Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284:31493–31497

    CAS  PubMed  Google Scholar 

  • Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86:226–235

    CAS  PubMed  Google Scholar 

  • Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU, Rogers JH, Fawcett JW (2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci 20:2427–2438

    CAS  PubMed  Google Scholar 

  • Asher RA, Morgenstern DA, Shearer MC, Adcock KH, Pesheva P, Fawcett JW (2002) Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J Neurosci 22:2225–2236

    CAS  PubMed  Google Scholar 

  • Aspberg A, Binkert C, Ruoslahti E (1995) The versican C-type lectin domain recognizes the adhesion protein tenascin-R. Proc Natl Acad Sci USA 92:10590–10594

    CAS  PubMed  Google Scholar 

  • Aspberg A, Miura R, Bourdoulous S, Shimonaka M, Heinegård D, Schachner M, Ruoslahti E, Yamaguchi Y (1997) The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moeity. Proc Natl Acad Sci USA 94:10116–10121

    CAS  PubMed  Google Scholar 

  • Aspberg A, Adam S, Kostka G, Timpl R, Heinegard D (1999) Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem 274:20444–20449

    CAS  PubMed  Google Scholar 

  • Asplund A, Stillemark-Billton P, Larsson E, Rydberg EK, Moses J, Hulten LM, Fagerberg B, Camejo G, Bondjers G (2009) Hypoxic regulation of secreted proteoglycans in macrophages. Glycobiology 20:33–40

    PubMed  Google Scholar 

  • Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, Kollet O, Hershkoviz R, Alon R, Hardan I, Ben-Hur H, Naor D, Nagler A, Lapidot T (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103:2981–2989

    CAS  PubMed  Google Scholar 

  • Aytekin M, Comhair SA, de la Motte C, Bandyopadhyay SK, Farver CF, Hascall VC, Erzurum SC, Dweik RA (2008) High levels of hyaluronan in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 295:L789–799

    CAS  PubMed  Google Scholar 

  • Baier C, Baader SL, Jankowski J, Gieselmann V, Schilling K, Rauch U, Kappler J (2007) Hyaluronan is organized into fiber-like structures along migratory pathways in the developing mouse cerebellum. Matrix Biol 26:348–358

    CAS  PubMed  Google Scholar 

  • Bakkers J, Kramer C, Pothof J, Quaedvlieg NE, Spaink HP, Hammerschmidt M (2004) Has2 is required upstream of Rac1 to govern dorsal migration of lateral cells during zebrafish gastrulation. Development 131:525–537

    CAS  PubMed  Google Scholar 

  • Beggah AT, Dours-Zimmermann MT, Barras FM, Brosius A, Zimmermann DR, Zurn AD (2005) Lesion-induced differential expression and cell association of Neurocan, Brevican, Versican V1 and V2 in the mouse dorsal root entry zone. Neuroscience 133:749–762

    CAS  PubMed  Google Scholar 

  • Bishop PN (2000) Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res 19:323–344

    CAS  PubMed  Google Scholar 

  • Bollyky PL, Lord JD, Masewicz SA, Evanko SP, Buckner JH, Wight TN, Nepom GT (2007) Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of CD4+CD25+ regulatory T cells. J Immunol 179:744–747

    CAS  PubMed  Google Scholar 

  • Bollyky PL, Falk BA, Wu RP, Buckner Thomas NWJH, Nepom GT (2009) Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. J Leukoc Biol 86:567–572

    CAS  PubMed  Google Scholar 

  • Bourguignon LY (2009) Hyaluronan-mediated CD44 interaction iwth receptor and non-receptor kinases promotes oncogenic signaling, cytoskeleton activation and tumor progression. In: Stern R (ed) Hyaluronan in cancer biology. Academic, San Diego, pp 89–107

    Google Scholar 

  • Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E (2004) CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem 279:26991–27007

    CAS  PubMed  Google Scholar 

  • Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    CAS  PubMed  Google Scholar 

  • Brakebusch C, Seidenbecher CI, Asztely F, Rauch U, Matthies H, Meyer H, Krug M, Bockers TM, Zhou X, Kreutz MR, Montag D, Gundelfinger ED, Fassler R (2002) Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol Cell Biol 22:7417–7427

    CAS  PubMed  Google Scholar 

  • Brown HM, Dunning KR, Robker RL, Pritchard M, Russell DL (2006) Requirement for ADAMTS-1 in extracellular matrix remodeling during ovarian folliculogenesis and lymphangiogenesis. Dev Biol 300:699–709

    CAS  PubMed  Google Scholar 

  • Bruckner G, Brauer K, Hartig W, Wolff JR, Rickmann MJ, Derouiche A, Delpech B, Girard N, Oertel WH, Reichenbach A (1993) Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8:183–200

    CAS  PubMed  Google Scholar 

  • Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360

    CAS  PubMed  Google Scholar 

  • Caniggia I, Liu J, Kuliszewski M, Tanswell AK, Post M (1996) Fetal lung fibroblasts selectively down-regulate proteoglycan synthesis in response to elevated oxygen. J Biol Chem 271:6625–6630

    CAS  PubMed  Google Scholar 

  • Cardoso LE, Little PJ, Ballinger ML, Chan CK, Braun KR, Potter-Perigo S, Bornfeldt KE, Kinsella MG, Wight TN (2010) Platelet-derived growth factor differentially regulates the expression and post-translational modification of versican by arterial smooth muscle cells through distinct protein kinase C and extracellular signal-regulated kinase pathways. J Biol Chem 285:6987–6995

    CAS  PubMed  Google Scholar 

  • Carpizo D, Iruela-Arispe ML (2000) Endogenous regulators of angiogenesis–emphasis on proteins with thrombospondin–type I motifs. Cancer Metastasis Rev 19:159–165

    CAS  PubMed  Google Scholar 

  • Carulli D, Rhodes KE, Fawcett JW (2007) Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. J Comp Neurol 501:83–94

    CAS  PubMed  Google Scholar 

  • Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21:510–515

    CAS  PubMed  Google Scholar 

  • Chan CK, Rolle MW, Potter-Perigo S, Braun KR, Van Biber BP, Laflamme MA, Murry CE, Wight TN (2010) Differentiation of cardiomyocytes from human embryonic stem cells is accompanied by changes in the extracellular matrix production of versican and hyaluronan. J Cell Biochem 111(3):585–596

    Google Scholar 

  • Chicurel ME, Chen CS, Ingber DE (1998a) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10:232–239

    CAS  PubMed  Google Scholar 

  • Chicurel ME, Singer RH, Meyer CJ, Ingber DE (1998b) Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392:730–733

    CAS  PubMed  Google Scholar 

  • Choudhary M, Zhang X, Stojkovic P, Hyslop L, Anyfantis G, Herbert M, Murdoch AP, Stojkovic M, Lako M (2007) Putative role of hyaluronan and its related genes, HAS2 and RHAMM, in human early preimplantation embryogenesis and embryonic stem cell characterization. Stem Cells 25:3045–3057

    CAS  PubMed  Google Scholar 

  • Chung IM, Gold HK, Schwartz SM, Ikari Y, Reidy MA, Wight TN (2002) Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment. J Am Coll Cardiol 40:2072–2081

    CAS  PubMed  Google Scholar 

  • Colone M, Calcabrini A, Toccacieli L, Bozzuto G, Stringaro A, Gentile M, Cianfriglia M, Ciervo A, Caraglia M, Budillon A, Meo G, Arancia G, Molinari A (2008) The multidrug transporter P-glycoprotein: a mediator of melanoma invasion? J Invest Dermatol 128:957–971

    CAS  PubMed  Google Scholar 

  • Cooley MA, Kern CB, Fresco VM, Wessels A, Thompson RP, McQuinn TC, Twal WO, Mjaatvedt CH, Drake CJ, Argraves WS (2008) Fibulin-1 is required for morphogenesis of neural crest-derived structures. Dev Biol 319:336–345

    CAS  PubMed  Google Scholar 

  • Coster L, Carlstedt I, Malmstrom A (1979) Isolation of 35S- and 3H-labelled proteoglycans from cultures of human embryonic skin fibroblasts. Biochem J 183:669–681

    CAS  PubMed  Google Scholar 

  • Czipri M, Otto JM, Cs-Szabo G, Kamath RV, Vermes C, Firneisz G, Kolman KJ, Watanabe H, Li Y, Roughley PJ, Yamada Y, Olsen BR, Glant TT (2003) Genetic rescue of chondrodysplasia and the perinatal lethal effect of cartilage link protein deficiency. J Biol Chem 278:39214–39223

    CAS  PubMed  Google Scholar 

  • de La Motte CA, Hascall VC, Calabro A, Yen-Lieberman B, Strong SA (1999) Mononuclear leukocytes preferentially bind via CD44 to hyaluronan on human intestinal mucosal smooth muscle cells after virus infection or treatment with poly(I.C). J Biol Chem 274:30747–30755

    Google Scholar 

  • de La Motte CA, Hascall VC, Drazba J, Bandyopadhyay SK, Strong SA (2003) Mononuclear leukocytes bind to specific hyaluronan structures on colon mucosal smooth muscle cells treated with polyinosinic acid:polycytidylic acid: inter-α-trypsin inhibitor is crucial to structure and function. Am J Pathol 163:121–133

    PubMed  Google Scholar 

  • Deb TB, Datta K (1996) Molecular cloning of human fibroblast hyaluronic acid-binding protein confirms its identity with P-32, a protein co-purified with splicing factor SF2. Hyaluronic acid-binding protein as P-32 protein, co-purified with splicing factor SF2. J Biol Chem 271:2206–2212

    CAS  PubMed  Google Scholar 

  • Dobbertin A, Rhodes KE, Garwood J, Properzi F, Heck N, Rogers JH, Fawcett JW, Faissner A (2003) Regulation of RPTPbeta/phosphacan expression and glycosaminoglycan epitopes in injured brain and cytokine-treated glia. Mol Cell Neurosci 24:951–971

    CAS  PubMed  Google Scholar 

  • Domenzain-Reyna C, Hernandez D, Miquel-Serra L, Docampo MJ, Badenas C, Fabra A, Bassols A (2009) Structure and regulation of the versican promoter: the versican promoter is regulated by AP-1 and TCF transcription factors in invasive human melanoma cells. J Biol Chem 284:12306–12317

    CAS  PubMed  Google Scholar 

  • Dours-Zimmermann MT, Maurer K, Rauch U, Stoffel W, Fassler R, Zimmermann DR (2009) Versican V2 assembles the extracellular matrix surrounding the nodes of ranvier in the CNS. J Neurosci 29:7731–7742

    CAS  PubMed  Google Scholar 

  • du Cros DL, LeBaron RG, Couchman JR (1995) Association of versican with dermal matrices and its potential role in hair follicle development and cycling. J Invest Dermatol 105:426–431

    CAS  PubMed  Google Scholar 

  • Duterme C, Mertens-Strijthagen J, Tammi M, Flamion B (2009) Two novel functions of hyaluronidase-2 (Hyal2) are formation of the glycocalyx and control of CD44-ERM interactions. J Biol Chem 284:33495–33508

    CAS  PubMed  Google Scholar 

  • Evanko SP, Angello JC, Wight TN (1999) Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19:1004–1013

    CAS  PubMed  Google Scholar 

  • Evanko SP, Johnson PY, Braun KR, Underhill CB, Dudhia J, Wight TN (2001) Platelet-derived growth factor stimulates the formation of versican-hyaluronan aggregates and pericellular matrix expansion in arterial smooth muscle cells. Arch Biochem Biophys 394:29–38

    CAS  PubMed  Google Scholar 

  • Evanko SP, Tammi MI, Tammi RH, Wight TN (2007) Hyaluronan-dependent pericellular matrix. Adv Drug Deliv Rev 59:1351–1365

    CAS  PubMed  Google Scholar 

  • Evanko SP, Potter-Perigo S, Johnson PY, Wight TN (2009) Organization of hyaluronan and versican in the extracellular matrix of human fibroblasts treated with the viral mimetic poly I:C. J Histochem Cytochem 57:1041–1060

    CAS  PubMed  Google Scholar 

  • Farb A, Kolodgie FD, Hwang JY, Burke AP, Tefera K, Weber DK, Wight TN, Virmani R (2004) Extracellular matrix changes in stented human coronary arteries. Circulation 110:940–947

    CAS  PubMed  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    CAS  PubMed  Google Scholar 

  • Fidler PS, Schuette K, Asher RA, Dobbertin A, Thornton SR, Calle-Patino Y, Muir E, Levine JM, Geller HM, Rogers JH, Faissner A, Fawcett JW (1999) Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J Neurosci 19:8778–8788

    CAS  PubMed  Google Scholar 

  • Firan M, Dhillon S, Estess P, Siegelman MH (2006) Suppressor activity and potency among regulatory T cells is discriminated by functionally active CD44. Blood 107:619–627

    CAS  PubMed  Google Scholar 

  • Formato M, Farina M, Spirito R, Maggioni M, Guarino A, Cherchi GM, Biglioli P, Edelstein C, Scanu AM (2004) Evidence for a proinflammatory and proteolytic environment in plaques from endarterectomy segments of human carotid arteries. Arterioscler Thromb Vasc Biol 24:129–135

    CAS  PubMed  Google Scholar 

  • Friedlander DR, Milev P, Karthikeyan L, Margolis RK, Margolis RU, Grumet M (1994) The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol 125:669–680

    CAS  PubMed  Google Scholar 

  • Fulop C, Szanto S, Mukhopadhyay D, Bardos T, Kamath RV, Rugg MS, Day AJ, Salustri A, Hascall VC, Glant TT, Mikecz K (2003) Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development 130:2253–2261

    CAS  PubMed  Google Scholar 

  • Gakunga P, Frost G, Shuster S, Cunha G, Formby B, Stern R (1997) Hyaluronan is a prerequisite for ductal branching morphogenesis. Development 124:3987–3997

    CAS  PubMed  Google Scholar 

  • Geary RL, Nikkari ST, Wagner WD, Williams JK, Adams MR, Dean RH (1998) Wound healing: a paradigm for lumen narrowing after arterial reconstruction. J Vasc Surg 27:96–106

    CAS  PubMed  Google Scholar 

  • Gerber BR, Franklin EC, Schubert M (1960) Ultracentrifugal fractionation of bovine nasal chondromucoprotein. J Biol Chem 235:2870–2875

    CAS  PubMed  Google Scholar 

  • Gilbert RJ, McKeon RJ, Darr A, Calabro A, Hascall VC, Bellamkonda RV (2005) CS-4, 6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol Cell Neurosci 29:545–558

    CAS  PubMed  Google Scholar 

  • Gill S, Wight TN, Frevert CW (2010) Proteoglycans: key regulators of pulmonary inflammation and the innate immune response to lung infection. Anat Rec (Hoboken) 293:968–981

    CAS  Google Scholar 

  • Gorden A, Osman I, Gai W, He D, Huang W, Davidson A, Houghton AN, Busam K, Polsky D (2003) Analysis of BRAF and N-RAS mutations in metastatic melanoma tissues. Cancer Res 63:3955–3957

    CAS  PubMed  Google Scholar 

  • Grammatikakis N, Grammatikakis A, Yoneda M, Yu Q, Banerjee SD, Toole BP (1995) A novel glycosaminoglycan-binding protein is the vertebrate homologue of the cell cycle control protein, cdc37. J Biol Chem 270:16198–16205

    CAS  PubMed  Google Scholar 

  • Gustavsson H, Jennbacken K, Welen K, Damber JE (2008) Altered expression of genes regulating angiogenesis in experimental androgen-independent prostate cancer. Prostate 68:161–170

    CAS  PubMed  Google Scholar 

  • Gutierrez P, O’Brien KD, Ferguson M, Nikkari ST, Alpers CE, Wight TN (1997) Differences in the distribution of versican, decorin, and biglycan in atherosclerotic human coronary arteries. Cardiovasc Pathol 6:271–278

    Google Scholar 

  • Haas CA, Rauch U, Thon N, Merten T, Deller T (1999) Entorhinal cortex lesion in adult rats induces the expression of the neuronal chondroitin sulfate proteoglycan neurocan in reactive astrocytes. J Neurosci 19:9953–9963

    CAS  PubMed  Google Scholar 

  • Halpert I, Sires U, Potter-Perigo S, Wight TN, Shapiro DS, Welgus HG, Wickline SA, Parks WC (1996) Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localized to areas of versican deposits. Proc Natl Acad Sci USA 93:9748–9753

    CAS  PubMed  Google Scholar 

  • Han CY, Subramanian S, Chan CK, Omer M, Chiba T, Wight TN, Chait A (2007) Adipocyte-derived serum amyloid A3 and hyaluronan play a role in monocyte recruitment and adhesion. Diabetes 56:2260–2273

    CAS  PubMed  Google Scholar 

  • Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, Ikeda M, Shiota H, Tamura M, Shimoe Y, Hirayama M, Arisato T, Yanagawa S, Tanaka A, Nakano I, Ikeda S, Yoshida Y, Yamamoto T, Ikeuchi T, Kuwano R, Nishizawa M, Tsuji S, Onodera O (2009) Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 360:1729–1739

    CAS  PubMed  Google Scholar 

  • Hartig W, Derouiche A, Welt K, Brauer K, Grosche J, Mader M, Reichenbach A, Bruckner G (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842:15–29

    CAS  PubMed  Google Scholar 

  • Hartmann U, Maurer P (2001) Proteoglycans in the nervous system–the quest for functional roles in vivo. Matrix Biol 20:23–35

    CAS  PubMed  Google Scholar 

  • Held-Feindt J, Paredes EB, Blomer U, Seidenbecher C, Stark AM, Mehdorn HM, Mentlein R (2006) Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human glioblastomas. Int J Cancer 118:55–61

    CAS  PubMed  Google Scholar 

  • Henderson DJ, Copp AJ (1997) Role of the extracellular matrix in neural crest cell migration. J Anat 191:507–515

    CAS  PubMed  Google Scholar 

  • Henderson DJ, Copp AJ (1998) Versican expression is associated with chamber specification, septation, and valvulogenesis in the developing mouse heart. Circ Res 83:523–532

    CAS  PubMed  Google Scholar 

  • Henderson DJ, Ybot-Gonzalez P, Copp AJ (1997) Over-expression of the chondroitin sulphate proteoglycan versican is associated with defective neural crest migration in the Pax3 mutant mouse (splotch). Mech Dev 69:39–51

    CAS  PubMed  Google Scholar 

  • Hinek A, Wilson SE (2000) Impaired elastogenesis in Hurler disease: dermatan sulfate accumulation linked to deficiency in elastin-binding protein and elastic fiber assembly. Am J Pathol 156:925–938

    CAS  PubMed  Google Scholar 

  • Hinek A, Mecham RP, Keeley F, Rabinovitch M (1991) Impaired elastin fiber assembly related to reduced 67-kD elastin-binding protein in fetal lamb ductus arteriosus and in cultured aortic smooth muscle cells treated with chondroitin sulfate. J Clin Invest 88:2083–2094

    CAS  PubMed  Google Scholar 

  • Hinek A, Braun KR, Liu K, Wang Y, Wight TN (2004) Retrovirally mediated overexpression of versican v3 reverses impaired elastogenesis and heightened proliferation exhibited by fibroblasts from Costello syndrome and Hurler disease patients. Am J Pathol 164:119–131

    CAS  PubMed  Google Scholar 

  • Hirose J, Kawashima H, Yoshie O, Tashiro K, Miyasaka M (2001) Versican interacts with chemokines and modulates cellular responses. J Biol Chem 276:5228–5234

    CAS  PubMed  Google Scholar 

  • Hollier BG, Evans K, Mani SA (2009) The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 14:29–43

    PubMed  Google Scholar 

  • Hu B, Kong LL, Matthews RT, Viapiano MS (2008) The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J Biol Chem 283:24848–24859

    CAS  PubMed  Google Scholar 

  • Huang H, He X (2008) Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20:119–125

    CAS  PubMed  Google Scholar 

  • Huang L, Grammatikakis N, Yoneda M, Banerjee SD, Toole BP (2000) Molecular characterization of a novel intracellular hyaluronan-binding protein. J Biol Chem 275:29829–29839

    CAS  PubMed  Google Scholar 

  • Huang R, Merrilees MJ, Braun K, Beaumont B, Lemire J, Clowes AW, Hinek A, Wight TN (2006) Inhibition of versican synthesis by antisense alters smooth muscle cell phenotype and induces elastic fiber formation in vitro and in neointima after vessel injury. Circ Res 98:370–377

    CAS  PubMed  Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    CAS  PubMed  Google Scholar 

  • Iozzo RV, Naso MF, Cannizzaro LA, Wasmuth JJ, McPherson JD (1992) Mapping of the versican proteoglycan gene (CSPG2) to the long arm of human chromosome 5 (5q12–5q14). Genomics 14:845–851

    CAS  PubMed  Google Scholar 

  • Isogai Z, Aspberg A, Keene DR, Ono RN, Reinhardt DP, Sakai LY (2002) Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J Biol Chem 277:4565–4572

    CAS  PubMed  Google Scholar 

  • Jackson DG (2009) Immunological functions of hyaluronan and its receptors in the lymphatics. Immunol Rev 230:216–231

    CAS  PubMed  Google Scholar 

  • Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R (2009) Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 61:198–223

    CAS  PubMed  Google Scholar 

  • Jaworski DM, Kelly GM, Hockfield S (1995) The CNS-specific hyaluronan-binding protein BEHAB is expressed in ventricular zones coincident with gliogenesis. J Neurosci 15:1352–1362

    CAS  PubMed  Google Scholar 

  • Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435–461

    CAS  PubMed  Google Scholar 

  • Jonsson-Rylander AC, Nilsson T, Fritsche-Danielson R, Hammarstrom A, Behrendt M, Andersson JO, Lindgren K, Andersson AK, Wallbrandt P, Rosengren B, Brodin P, Thelin A, Westin A, Hurt-Camejo E, Lee-Sogaard CH (2005) Role of ADAMTS-1 in atherosclerosis: remodeling of carotid artery, immunohistochemistry, and proteolysis of versican. Arterioscler Thromb Vasc Biol 25:180–185

    PubMed  Google Scholar 

  • Kähäri V-M, Larjava H, Uitto J (1991) Differential regulation of extracellular matrix proteoglycan (PG) gene expression. J Biol Chem 266:10609–10615

    Google Scholar 

  • Kaji T, Yamada A, Miyajima S, Yamamoto C, Fujiwara Y, Wight TN, Kinsella MG (2000) Cell density-dependent regulation of proteoglycan synthesis by transforming growth factor-beta(1) in cultured bovine aortic endothelial cells. J Biol Chem 275:1463–1470

    CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    CAS  PubMed  Google Scholar 

  • Kamiya N, Watanabe H, Habuchi H, Takagi H, Shinomura T, Shimizu K, Kimata K (2006) Versican/PG-M regulates chondrogenesis as an extracellular matrix molecule crucial for mesenchymal condensation. J Biol Chem 281:2390–2400

    CAS  PubMed  Google Scholar 

  • Kappler J, Hegener O, Baader SL, Franken S, Gieselmann V, Haberlein H, Rauch U (2009) Transport of a hyaluronan-binding protein in brain tissue. Matrix Biol 28:396–405

    CAS  PubMed  Google Scholar 

  • Karra R, Vemullapalli S, Dong C, Herderick EE, Song X, Slosek K, Nevins JR, West M, Goldschmidt-Clermont PJ, Seo D (2005) Molecular evidence for arterial repair in atherosclerosis. Proc Natl Acad Sci USA 102:16789–16794

    CAS  PubMed  Google Scholar 

  • Katoh-Semba R, Matsuda M, Watanabe E, Maeda N, Oohira A (1998) Two types of brain chondroitin sulfate proteoglycan: their distribution and possible functions in the rat embryo. Neurosci Res 31:273–282

    CAS  PubMed  Google Scholar 

  • Kawashima H, Atarashi K, Hirose M, Hirose J, Yamada S, Sugahara K, Miyasaka M (2002) Oversulfated chondroitin/dermatan sulfates containing GlcAbeta1/IdoAalpha1–3GalNAc(4, 6-O-disulfate) interact with L- and P-selectin and chemokines. J Biol Chem 277:12921–12930

    CAS  PubMed  Google Scholar 

  • Kaya G, Rodriguez I, Jorcano JL, Vassalli P, Stamenkovic I (1997) Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation. Genes Dev 11:996–1007

    CAS  PubMed  Google Scholar 

  • Kenagy RD, Fischer JW, Davies MG, Berceli SA, Hawkins SM, Wight TN, Clowes AW (2002) Increased plasmin and serine proteinase activity during flow-induced intimal atrophy in baboon PTFE grafts. Arterioscler Thromb Vasc Biol 22:400–404

    CAS  PubMed  Google Scholar 

  • Kenagy RD, Fischer JW, Lara S, Sandy JD, Clowes AW, Wight TN (2005) Accumulation and loss of extracellular matrix during shear stress-mediated intimal growth and regression in baboon vascular grafts. J Histochem Cytochem 53:131–140

    CAS  PubMed  Google Scholar 

  • Kenagy RD, Plaas AH, Wight TN (2006) Versican degradation and vascular disease. Trends Cardiovasc Med 16:209–215

    CAS  PubMed  Google Scholar 

  • Kenagy RD, Min SK, Clowes AW, Sandy JD (2009) Cell death-associated ADAMTS4 and versican degradation in vascular tissue. J Histochem Cytochem 57:889–897

    CAS  PubMed  Google Scholar 

  • Kern CB, Twal WO, Mjaatvedt CH, Fairey SE, Toole BP, Iruela-Arispe ML, Argraves WS (2006) Proteolytic cleavage of versican during cardiac cushion morphogenesis. Dev Dyn 235:2238–2247

    CAS  PubMed  Google Scholar 

  • Kern CB, Norris RA, Thompson RP, Argraves WS, Fairey SE, Reyes L, Hoffman S, Markwald RR, Mjaatvedt CH (2007) Versican proteolysis mediates myocardial regression during outflow tract development. Dev Dyn 236:671–683

    CAS  PubMed  Google Scholar 

  • Kern CB, Wessels A, McGarity J, Dixon LJ, Alston E, Argraves WS, Geeting D, Nelson CM, Menick DR, Apte SS (2010) Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biol 29:304–316

    CAS  PubMed  Google Scholar 

  • Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    CAS  PubMed  Google Scholar 

  • Kimata K, Oike Y, Tani K, Shinomura T, Yamagata M, Uritani M, Suzuki S (1986) A large chondroitin sulfate proteoglycan (PG-M) synthesized before chondrogenesis in the limb bud of chick embryo. J Biol Chem 261:13517–13525

    CAS  PubMed  Google Scholar 

  • Kimura JH, Hardingham TE, Hascall VC, Solursh M (1979) Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem 254:2600–2609

    CAS  PubMed  Google Scholar 

  • Kinsella M, Bressler S, Wight T (2004) The regulated synthesis of versican, decorin and biglycan: extracellular proteoglycans that influence cell phenotype. Crit Rev Eukaryot Gene Expr 14:203–234

    CAS  PubMed  Google Scholar 

  • Kischel P, Waltregny D, Dumont B, Turtoi A, Greffe Y, Kirsch S, De Pauw E, Castronovo V (2010) Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting. Int J Cancer 126:640–650

    CAS  PubMed  Google Scholar 

  • Kishimoto J, Ehama R, Wu L, Jiang S, Jiang N, Burgeson RE (1999) Selective activation of the versican promoter by epithelial- mesenchymal interactions during hair follicle development. Proc Natl Acad Sci USA 96:7336–7341

    CAS  PubMed  Google Scholar 

  • Kloeckener-Gruissem B, Bartholdi D, Abdou MT, Zimmermann DR, Berger W (2006) Identification of the genetic defect in the original Wagner syndrome family. Mol Vis 12:350–355

    CAS  PubMed  Google Scholar 

  • Knudson CB, Toole BP (1985) Changes in the pericellular matrix during differentiation of limb bud mesoderm. Dev Biol 112:308–318

    CAS  PubMed  Google Scholar 

  • Knudson W, Chow G, Knudson CB (2002) CD44-mediated uptake and degradation of hyaluronan. Matrix Biol 21:15–23

    CAS  PubMed  Google Scholar 

  • Kolodgie FD, Burke AP, Farb A, Weber DK, Kutys R, Wight TN, Virmani R (2002) Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 22:1642–1648

    CAS  PubMed  Google Scholar 

  • Koo BH, Longpre JM, Somerville RP, Alexander JP, Leduc R, Apte SS (2006) Cell-surface processing of pro-ADAMTS9 by furin. J Biol Chem 281:12485–12494

    CAS  PubMed  Google Scholar 

  • Koo BH, Longpre JM, Somerville RP, Alexander JP, Leduc R, Apte SS (2007) Regulation of ADAMTS9 secretion and enzymatic activity by its propeptide. J Biol Chem 282:16146–16154

    CAS  PubMed  Google Scholar 

  • Korswagen HC, Clevers HC (1999) Activation and repression of wingless/Wnt target genes by the TCF/LEF-1 family of transcription factors. Cold Spring Harb Symp Quant Biol 64:141–147

    CAS  PubMed  Google Scholar 

  • Kosher RA, Savage MP, Walker KH (1981) A gradation of hyaluronate accumulation along the proximodistal axis of the embryonic chick limb bud. J Embryol Exp Morphol 63:85–98

    CAS  PubMed  Google Scholar 

  • Koyama H, Hibi T, Isogai Z, Yoneda M, Fujimori M, Amano J, Kawakubo M, Kannagi R, Kimata K, Taniguchi S, Itano N (2007) Hyperproduction of hyaluronan in neu-induced mammary tumor accelerates angiogenesis through stromal cell recruitment: possible involvement of versican/PG-M. Am J Pathol 170:1086–1099

    CAS  PubMed  Google Scholar 

  • Kulyk WM, Kosher RA (1987) Temporal and spatial analysis of hyaluronidase activity during development of the embryonic chick limb bud. Dev Biol 120:535–541

    CAS  PubMed  Google Scholar 

  • Kuno K, Okada Y, Kawashima H, Nakamura H, Miyasaka M, Ohno H, Matsushima K (2000) ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett 478:241–245

    CAS  PubMed  Google Scholar 

  • Laabs TL, Wang H, Katagiri Y, McCann T, Fawcett JW, Geller HM (2007) Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans. J Neurosci 27:14494–14501

    CAS  PubMed  Google Scholar 

  • Landolt RM, Vaughan L, Winterhalter KH, Zimmermann DR (1995) Versican is selectively expressed in embryonic tissues that act as barriers to neural crest cell migration and axon outgrowth. Development 121:2303–2312

    CAS  PubMed  Google Scholar 

  • LaPierre DP, Lee DY, Li SZ, Xie YZ, Zhong L, Sheng W, Deng Z, Yang BB (2007) The ability of versican to simultaneously cause apoptotic resistance and sensitivity. Cancer Res 67:4742–4750

    CAS  PubMed  Google Scholar 

  • Laurent TC, Fraser JR (1986) The properties and turnover of hyaluronan. Ciba Found Symp 124:9–29

    CAS  PubMed  Google Scholar 

  • Lee RT, Yamamoto C, Feng Y, Potter-Perigo S, Briggs WH, Landschulz KT, Turi TG, Thompson JF, Libby P, Wight TN (2001) Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J Biol Chem 276:13847–13851

    CAS  PubMed  Google Scholar 

  • Lemire JM, Covin CW, White S, Giachelli CM, Schwartz SM (1994) Characterization of cloned aortic smooth muscle cells from young rats. Am J Pathol 144:1068–1081

    CAS  PubMed  Google Scholar 

  • Lemire JM, Potter-Perigo S, Hall KL, Wight TN, Schwartz SM (1996) Distinct rat aortic smooth muscle cells differ in versican/PG-M expression. Arterioscler Thromb Vasc Biol 16:821–829

    CAS  PubMed  Google Scholar 

  • Lemire JM, Merrilees MJ, Braun KR, Wight TN (2002) Overexpression of the V3 variant of versican alters arterial smooth muscle cell adhesion, migration, and proliferation in vitro. J Cell Physiol 190:38–45

    CAS  PubMed  Google Scholar 

  • Lemire JM, Chan CK, Bressler S, Miller J, LeBaron RG, Wight TN (2007) Interleukin-1beta selectively decreases the synthesis of versican by arterial smooth muscle cells. J Cell Biochem 101:753–766

    CAS  PubMed  Google Scholar 

  • Li Y, Toole BP, Dealy CN, Kosher RA (2007) Hyaluronan in limb morphogenesis. Dev Biol 305:411–420

    CAS  PubMed  Google Scholar 

  • Li F, Ten Dam GB, Murugan S, Yamada S, Hashiguchi T, Mizumoto S, Oguri K, Okayama M, van Kuppevelt TH, Sugahara K (2008) Involvement of highly sulfated chondroitin sulfate in the metastasis of the lewis lung carcinoma cells. J Biol Chem 283:34294–34304

    CAS  PubMed  Google Scholar 

  • Lin H, Ignatescu M, Wilson JE, Roberts CR, Horley KJ, Winters GL, Costanzo MR, McManus BM (1996) Prominence of apolipoproteins B, (a), and E in the intimae of coronary arteries in transplanted human hearts: geographic relationship to vessel wall proteoglycans. J Heart Lung Transplant 15:1223–1232

    CAS  PubMed  Google Scholar 

  • Little PJ, Tannock L, Olin KL, Chait A, Wight TN (2002) Proteoglycans synthesized by arterial smooth muscle cells in the presence of transforming growth factor-beta1 exhibit increased binding to LDLs. Arterioscler Thromb Vasc Biol 22:55–60

    CAS  PubMed  Google Scholar 

  • Little PJ, Ballinger ML, Burch ML, Osman N (2008) Biosynthesis of natural and hyperelongated chondroitin sulfate glycosaminoglycans: new insights into an elusive process. Open Biochem J 2:135–142

    CAS  PubMed  Google Scholar 

  • Longpre JM, McCulloch DR, Koo BH, Alexander JP, Apte SS, Leduc R (2009) Characterization of proADAMTS5 processing by proprotein convertases. Int J Biochem Cell Biol 41:1116–1126

    CAS  PubMed  Google Scholar 

  • Lundell A, Olin AI, Morgelin M, al-Karadaghi S, Aspberg A, Logan DT (2004) Structural basis for interactions between tenascins and lectican C-type lectin domains: evidence for a crosslinking role for tenascins. Structure 12:1495–1506

    CAS  PubMed  Google Scholar 

  • Majors AK, Austin RC, de la Motte CA, Pyeritz RE, Hascall VC, Kessler SP, Sen G, Strong SA (2003) Endoplasmic reticulum stress induces hyaluronan deposition and leukocyte adhesion. J Biol Chem 278:47223–47231

    CAS  PubMed  Google Scholar 

  • Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T, Ono T, Albertson DG, Pinkel D, Bastian BC (2003) Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 95:1878–1890

    CAS  PubMed  Google Scholar 

  • Margolis RU, Margolis RK (1994) Aggrecan-versican-neurocan family proteoglycans. Methods Enzymol 245:105–126

    CAS  PubMed  Google Scholar 

  • Margolis RK, Rauch U, Maurel P, Margolis RU (1996) Neurocan and phosphacan: two major nervous tissue-specific chondroitin sulfate proteoglycans. Perspect Dev Neurobiol 3:273–290

    CAS  PubMed  Google Scholar 

  • Matrosova VY, Orlovskaya IA, Serobyan N, Khaldoyanidi SK (2004) Hyaluronic acid facilitates the recovery of hematopoiesis following 5-fluorouracil administration. Stem Cells 22:544–555

    CAS  PubMed  Google Scholar 

  • Matsui F, Kawashima S, Shuo T, Yamauchi S, Tokita Y, Aono S, Keino H, Oohira A (2002) Transient expression of juvenile-type neurocan by reactive astrocytes in adult rat brains injured by kainate-induced seizures as well as surgical incision. Neuroscience 112:773–781

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Li Y, Jakuba C, Sugiyama Y, Sayo T, Okuno M, Dealy CN, Toole BP, Takeda J, Yamaguchi Y, Kosher RA (2009) Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development 136:2825–2835

    CAS  PubMed  Google Scholar 

  • Matthews RT, Gary SC, Zerillo C, Pratta M, Solomon K, Arner EC, Hockfield S (2000) Brain-enriched hyaluronan binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member. J Biol Chem 275:22695–22703

    CAS  PubMed  Google Scholar 

  • Maxwell CA, McCarthy J, Turley E (2008) Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J Cell Sci 121:925–932

    CAS  PubMed  Google Scholar 

  • Mayanil CS, George D, Freilich L, Miljan EJ, Mania-Farnell B, McLone DG, Bremer EG (2001) Microarray analysis detects novel Pax3 downstream target genes. J Biol Chem 276:49299–49309

    CAS  PubMed  Google Scholar 

  • Mazzucato M, Cozzi MR, Pradella P, Perissinotto D, Malmstrom A, Morgelin M, Spessotto P, Colombatti A, De Marco L, Perris R (2002) Vascular PG-M/versican variants promote platelet adhesion at low shear rates and cooperate with collagens to induce aggregation. FASEB J 16:1903–1916

    CAS  PubMed  Google Scholar 

  • McCulloch DR, Nelson CM, Dixon LJ, Silver DL, Wylie JD, Lindner V, Sasaki T, Cooley MA, Argraves WS, Apte SS (2009) ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression. Dev Cell 17:687–698

    CAS  PubMed  Google Scholar 

  • McGee M, Wagner WD (2003) Chondroitin sulfate anticoagulant activity Is linked to water transfer: relevance to proteoglycan structure in atherosclerosis. Arterioscler Thromb Vasc Biol 23:1921–1927

    CAS  PubMed  Google Scholar 

  • McKeon RJ, Hoke A, Silver J (1995) Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136:32–43

    CAS  PubMed  Google Scholar 

  • McKeon RJ, Jurynec MJ, Buck CR (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19:10778–10788

    CAS  PubMed  Google Scholar 

  • Merrilees MJ, Beaumont B, Scott LJ (2001) Comparison of deposits of versican, biglycan and decorin in saphenous vein and internal thoracic, radial and coronary arteries: correlation to patency. Coron Artery Dis 12:7–16

    CAS  PubMed  Google Scholar 

  • Merrilees MJ, Lemire JM, Fischer JW, Kinsella MG, Braun KR, Clowes AW, Wight TN (2002) Retrovirally mediated overexpression of versican v3 by arterial smooth muscle cells induces tropoelastin synthesis and elastic fiber formation in vitro and in neointima after vascular injury. Circ Res 90:481–487

    CAS  PubMed  Google Scholar 

  • Meyer K, Palmer JW, Smyth EM (1937) On glycoproteins: V. Protein complexes of chrondroitinsulfuric acid. J Biol Chem 119:501–506

    CAS  Google Scholar 

  • Meyer K, Linker A, Davidson EA, Weissmann B (1953) The mucopolysaccharides of bovine cornea. J Biol Chem 205:611–616

    CAS  PubMed  Google Scholar 

  • Miguel RF, Pollak A, Lubec G (2005) Metalloproteinase ADAMTS-1 but not ADAMTS-5 is manifold overexpressed in neurodegenerative disorders as Down syndrome, Alzheimer’s and Pick’s disease. Brain Res Mol Brain Res 133:1–5

    CAS  PubMed  Google Scholar 

  • Miletti-Gonzalez KE, Chen S, Muthukumaran N, Saglimbeni GN, Wu X, Yang J, Apolito K, Shih WJ, Hait WN, Rodriguez-Rodriguez L (2005) The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res 65:6660–6667

    CAS  PubMed  Google Scholar 

  • Milev P, Maurel P, Chiba A, Mevissen M, Popp S, Yamaguchi Y, Margolis RK, Margolis RU (1998) Differential regulation of expression of hyaluronan-binding proteoglycans in developing brain: aggrecan, versican, neurocan, and brevican. Biochem Biophys Res Commun 247:207–212

    CAS  PubMed  Google Scholar 

  • Miura R, Ethell IM, Yamaguchi Y (2001) Carbohydrate-protein interactions between HNK-1-reactive sulfoglucuronyl glycolipids and the proteoglycan lectin domain mediate neuronal cell adhesion and neurite outgrowth. J Neurochem 76:413–424

    CAS  PubMed  Google Scholar 

  • Miyamoto T, Inoue H, Sakamoto Y, Kudo E, Naito T, Mikawa T, Mikawa Y, Isashiki Y, Osabe D, Shinohara S, Shiota H, Itakura M (2005) Identification of a novel splice site mutation of the CSPG2 gene in a Japanese family with Wagner syndrome. Invest Ophthalmol Vis Sci 46:2726–2735

    PubMed  Google Scholar 

  • Mjaatvedt CH, Yamamura H, Capehart AA, Turner D, Markwald RR (1998) The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev Biol 202:56–66

    CAS  PubMed  Google Scholar 

  • Morawski M, Bruckner MK, Riederer P, Bruckner G, Arendt T (2004) Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188:309–315

    CAS  PubMed  Google Scholar 

  • Morgenstern DA, Asher RA, Fawcett JW (2002) Chondroitin sulphate proteoglycans in the CNS injury response. Prog Brain Res 137:313–332

    CAS  PubMed  Google Scholar 

  • Morton SU, Scherz PJ, Cordes KR, Ivey KN, Stainier DY, Srivastava D (2008) microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA 105:17830–17835

    CAS  PubMed  Google Scholar 

  • Muir H (1958) The nature of the link between protein and carbohydrate of a chondroitin sulphate complex from hyaline cartilage. Biochem J 69:195–204

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay D, Asari A, Rugg MS, Day AJ, Fulop C (2004) Specificity of the tumor necrosis factor-induced protein 6-mediated heavy chain transfer from inter-alpha-trypsin inhibitor to hyaluronan: implications for the assembly of the cumulus extracellular matrix. J Biol Chem 279:11119–11128

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Nikopoulos K, Maugeri A, de Brouwer AP, van Nouhuys CE, Boon CJ, Perveen R, Zegers HA, Wittebol-Post D, van den Biesen PR, van der Velde-Visser SD, Brunner HG, Black GC, Hoyng CB, Cremers FP (2006) Erosive vitreoretinopathy and wagner disease are caused by intronic mutations in CSPG2/Versican that result in an imbalance of splice variants. Invest Ophthalmol Vis Sci 47:3565–3572

    PubMed  Google Scholar 

  • Nairn AV, Kinoshita-Toyoda A, Toyoda H, Xie J, Harris K, Dalton S, Kulik M, Pierce JM, Toida T, Moremen KW, Linhardt RJ (2007) Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J Proteome Res 6:4374–4387

    CAS  PubMed  Google Scholar 

  • Nakada M, Miyamori H, Kita D, Takahashi T, Yamashita J, Sato H, Miura R, Yamaguchi Y, Okada Y (2005) Human glioblastomas overexpress ADAMTS-5 that degrades brevican. Acta Neuropathol 110:239–246

    CAS  PubMed  Google Scholar 

  • Nakamura H, Fujii Y, Inoki I, Sugimoto K, Tanzawa K, Matsuki H, Miura R, Yamaguchi Y, Okada Y (2000) Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J Biol Chem 275:38885–38890

    CAS  PubMed  Google Scholar 

  • Naor D, Nedvetzki S, Walmsley M, Yayon A, Turley EA, Golan I, Caspi D, Sebban LE, Zick Y, Garin T, Karussis D, Assayag-Asherie N, Raz I, Weiss L, Slavin S (2007) CD44 involvement in autoimmune inflammations: the lesson to be learned from CD44-targeting by antibody or from knockout mice. Ann NY Acad Sci 1110:233–247

    CAS  PubMed  Google Scholar 

  • Naso MF, Zimmermann DR, Iozzo RV (1994) Characterization of the complete genomic structure of the human versican gene and functional analysis of its promoter. J Biol Chem 269:32999–33008

    CAS  PubMed  Google Scholar 

  • Nicoll SB, Barak O, Csoka AB, Bhatnagar RS, Stern R (2002) Hyaluronidases and CD44 undergo differential modulation during chondrogenesis. Biochem Biophys Res Commun 292:819–825

    CAS  PubMed  Google Scholar 

  • Niederost BP, Zimmermann DR, Schwab ME, Bandtlow CE (1999) Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J Neurosci 19:8979–8989

    CAS  PubMed  Google Scholar 

  • Nilsson SK, Haylock DN, Johnston HM, Occhiodoro T, Brown TJ, Simmons PJ (2003) Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood 101:856–862

    CAS  PubMed  Google Scholar 

  • Noble PW (2002) Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol 21:25–29

    CAS  PubMed  Google Scholar 

  • Nutt CL, Zerillo CA, Kelly GM, Hockfield S (2001) Brain enriched hyaluronan binding (BEHAB)/brevican increases aggressiveness of CNS-1 gliomas in Lewis rats. Cancer Res 61:7056–7059

    CAS  PubMed  Google Scholar 

  • Olin AI, Morgelin M, Sasaki T, Timpl R, Heinegard D, Aspberg A (2001) The proteoglycans aggrecan and Versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem 276:1253–1261

    CAS  PubMed  Google Scholar 

  • Ori M, Nardini M, Casini P, Perris R, Nardi I (2006) XHas2 activity is required during somitogenesis and precursor cell migration in Xenopus development. Development 133:631–640

    CAS  PubMed  Google Scholar 

  • Ostberg CO, Zhu P, Wight TN, Qwarnstrom EE (1995) Fibronectin attachment is permissive for IL-1 mediated gene regulation. FEBS Lett 367:93–97

    CAS  PubMed  Google Scholar 

  • Pandey MS, Harris EN, Weigel JA, Weigel PH (2008) The cytoplasmic domain of the hyaluronan receptor for endocytosis (HARE) contains multiple endocytic motifs targeting coated pit-mediated internalization. J Biol Chem 283:21453–21461

    CAS  PubMed  Google Scholar 

  • Passi A, Negrini D, Albertini R, Miserocchi G, De Luca G (1999) The sensitivity of versican from rabbit lung to gelatinase A (MMP-2) and B (MMP-9) and its involvement in the development of hydraulic lung edema. FEBS Lett 456:93–96

    CAS  PubMed  Google Scholar 

  • Perides G, Asher RA, Lark MW, Lane WS, Robinson RA, Bignami A (1995) Glial hyaluronate-binding protein: a product of metalloproteinase digestion of versican? Biochem J 312:377–384

    CAS  PubMed  Google Scholar 

  • Perissinotto D, Iacopetti P, Bellina I, Doliana R, Colombatti A, Pettway Z, Bronner-Fraser M, Shinomura T, Kimata K, Morgelin M, Lofberg J, Perris R (2000) Avian neural crest cell migration is diversely regulated by the two major hyaluronan-binding proteoglycans PG-M/versican and aggrecan. Development 127:2823–2842

    CAS  PubMed  Google Scholar 

  • Perris R, Lofberg J, Fallstrom C, von Boxberg Y, Olsson L, Newgreen DF (1990) Structural and compositional divergencies in the extracellular matrix encountered by neural crest cells in the white mutant axolotl embryo. Development 109:533–551

    CAS  PubMed  Google Scholar 

  • Pienimaki JP, Rilla K, Fulop C, Sironen RK, Karvinen S, Pasonen S, Lammi MJ, Tammi R, Hascall VC, Tammi MI (2001) Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan. J Biol Chem 276:20428–20435

    CAS  PubMed  Google Scholar 

  • Pohl M, Sakurai H, Stuart RO, Nigam SK (2000) Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells. Dev Biol 224:312–325

    CAS  PubMed  Google Scholar 

  • Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    CAS  PubMed  Google Scholar 

  • Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45

    CAS  PubMed  Google Scholar 

  • Potter-Perigo S, Johnson PY, Evanko SP, Chan CK, Braun KR, Wilkinson TS, Altman LC, Wight TN (2009) Poly I:C stimulates versican accumulation in the extracellular matrix promoting monocyte adhesion. Am J Respir Cell Mol Biol 43:109–120

    PubMed  Google Scholar 

  • Powell JD, Horton MR (2005) Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res 31:207–218

    CAS  PubMed  Google Scholar 

  • Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG (2001) Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 276:19420–19430

    CAS  PubMed  Google Scholar 

  • Properzi F, Fawcett JW (2004) Proteoglycans and brain repair. News Physiol Sci 19:33–38

    CAS  PubMed  Google Scholar 

  • Properzi F, Carulli D, Asher RA, Muir E, Camargo LM, van Kuppevelt TH, ten Dam GB, Furukawa Y, Mikami T, Sugahara K, Toida T, Geller HM, Fawcett JW (2005) Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia. Eur J Neurosci 21:378–390

    PubMed  Google Scholar 

  • Qwarnström EE, Järveläinen HT, Kinsella MK, Ostberg CO, Sandell LJ, Page RC, Wight TN (1993) Interleukin-1β regulation of fibroblast proteoglycan synthesis involves a decrease in versican steady-state mRNA levels. Biochem J 294:613–620

    PubMed  Google Scholar 

  • Rahmani M, Read JT, Carthy JM, McDonald PC, Wong BW, Esfandiarei M, Si X, Luo Z, Luo H, Rennie PS, McManus BM (2005) Regulation of the versican promoter by the beta-catenin-T-cell factor complex in vascular smooth muscle cells. J Biol Chem 280:13019–13028

    CAS  PubMed  Google Scholar 

  • Rahmani M, Wong BW, Ang L, Cheung CC, Carthy JM, Walinski H, McManus BM (2006) Versican: signaling to transcriptional control pathways. Can J Physiol Pharmacol 84:77–92

    CAS  PubMed  Google Scholar 

  • Rauch U (2004) Extracellular matrix components associated with remodeling processes in brain. Cell Mol Life Sci 61:2031–2045

    CAS  PubMed  Google Scholar 

  • Rauch U, Karthikeyan L, Maurel P, Margolis RU, Margolis RK (1992) Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J Biol Chem 267:19536–19547

    CAS  PubMed  Google Scholar 

  • Rauch U, Zhou XH, Roos G (2005) Extracellular matrix alterations in brains lacking four of its components. Biochem Biophys Res Commun 328:608–617

    CAS  PubMed  Google Scholar 

  • Read JT, Rahmani M, Boroomand S, Allahverdian S, McManus BM, Rennie PS (2007) Androgen receptor regulation of the versican gene through an androgen response element in the proximal promoter. J Biol Chem 282:31954–31963

    CAS  PubMed  Google Scholar 

  • Reinhardt DP, Sasaki T, Dzamba BJ, Keene DR, Chu ML, Gohring W, Timpl R, Sakai LY (1996) Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem 271:19489–19496

    CAS  PubMed  Google Scholar 

  • Ricciardelli C, Mayne K, Sykes PJ, Raymond WA, McCaul K, Marshall VR, Horsfall DJ (1998) Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer. Clin Cancer Res 4:963–971

    CAS  PubMed  Google Scholar 

  • Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ (2009) The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 28:233–245

    PubMed  Google Scholar 

  • Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, Foidart JM, Noel A, Cataldo D (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90:369–379

    CAS  PubMed  Google Scholar 

  • Ronan SM, Tran-Viet KN, Burner EL, Metlapally R, Toth CA, Young TL (2009) Mutational hot spot potential of a novel base pair mutation of the CSPG2 gene in a family with Wagner syndrome. Arch Ophthalmol 127:1511–1519

    PubMed  Google Scholar 

  • Roseman S (2001) Reflections on glycobiology. J Biol Chem 276:41527–41542

    Google Scholar 

  • Ruscheinsky M, De la Motte C, Mahendroo M (2008) Hyaluronan and its binding proteins during cervical ripening and parturition: dynamic changes in size, distribution and temporal sequence. Matrix Biol 27:487–497

    CAS  PubMed  Google Scholar 

  • Russell D, Salustri A (2006) Extracellular matrix of the cumulus-oocyte complex. Semin Reprod Med 24:217–227

    CAS  PubMed  Google Scholar 

  • Russell DL, Doyle KM, Ochsner SA, Sandy JD, Richards JS (2003a) Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. J Biol Chem 278:42330–42339

    CAS  PubMed  Google Scholar 

  • Russell DL, Ochsner SA, Hsieh M, Mulders S, Richards JS (2003b) Hormone-regulated expression and localization of versican in the rodent ovary. Endocrinology 144:1020–1031

    CAS  PubMed  Google Scholar 

  • Sajdera SW, Hascall VC (1969) Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J Biol Chem 244:77–87

    CAS  PubMed  Google Scholar 

  • Salustri A, Camaioni A, Di Giacomo M, Fulop C, Hascall VC (1999) Hyaluronan and proteoglycans in ovarian follicles. Hum Reprod Update 5:293–301

    CAS  PubMed  Google Scholar 

  • Sandy JD (2006) A contentious issue finds some clarity: on the independent and complementary roles of aggrecanase activity and MMP activity in human joint aggrecanolysis. Osteoarthritis Cartilage 14:95–100

    CAS  PubMed  Google Scholar 

  • Sandy JD, Westling J, Kenagy RD, Iruela-Arispe ML, Verscharen C, Rodriguez-Mazaneque JC, Zimmermann DR, Lemire JM, Fischer JW, Wight TN, Clowes AW (2001) Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem 276:13372–13378

    CAS  PubMed  Google Scholar 

  • Schmalfeldt M, Bandtlow CE, Dours-Zimmermann MT, Winterhalter KH, Zimmermann DR (2000) Brain derived versican V2 is a potent inhibitor of axonal growth. J Cell Sci 113:807–816

    CAS  PubMed  Google Scholar 

  • Schönherr E, Järveläinen HT, Sandell LJ, Wight TN (1991) Effects of platelet-derived growth factor and transforming growth factor-β 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem 266:17640–17647

    PubMed  Google Scholar 

  • Schönherr E, Kinsella MG, Wight TN (1997) Genistein selectively inhibits platelet-derived growth factor stimulated versican biosynthesis in monkey arterial smooth muscle cells. Arch Biochem Biophys 339:353–361

    PubMed  Google Scholar 

  • Schor H, Vaday GG, Lider O (2000) Modulation of leukocyte behavior by an inflamed extracellular matrix. Dev Immunol 7:227–238

    CAS  PubMed  Google Scholar 

  • Seidelmann SB, Kuo C, Pleskac N, Molina J, Sayers S, Li R, Zhou J, Johnson P, Braun K, Chan C, Teupser D, Breslow JL, Wight TN, Tall AR, Welch CL (2008) Athsq1 is an atherosclerosis modifier locus with dramatic effects on lesion area and prominent accumulation of versican. Arterioscler Thromb Vasc Biol 28:2180–2186

    CAS  PubMed  Google Scholar 

  • Seidenbecher CI, Richter K, Rauch U, Fassler R, Garner CC, Gundelfinger ED (1995a) Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored isoforms. J Biol Chem 270:27206–27212

    CAS  PubMed  Google Scholar 

  • Seidenbecher CI, Richter K, Rauch U, Fässler R, Garner CC, Gundelfinger ED (1995b) Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored isoforms. J Biol Chem 270:27206–27212

    CAS  PubMed  Google Scholar 

  • Seidenbecher CI, Gundelfinger ED, Bockers TM, Trotter J, Kreutz MR (1998) Transcripts for secreted and GPI-anchored brevican are differentially distributed in rat brain. Eur J Neurosci 10:1621–1630

    CAS  PubMed  Google Scholar 

  • Seno N, Meyer K, Anderson B, Hoffman P (1965) Variations in Keratosulfates. J Biol Chem 240:1005–1010

    CAS  PubMed  Google Scholar 

  • Shatton J, Schubert M (1954) Isolation of a mucoprotein from cartilage. J Biol Chem 211:565–573

    CAS  PubMed  Google Scholar 

  • Sheng W, Wang G, Wang Y, Liang J, Wen J, Zheng PS, Wu Y, Lee V, Slingerland J, Dumont D, Yang BB (2005) The roles of versican V1 and V2 isoforms in cell proliferation and apoptosis. Mol Biol Cell 16:1330–1340

    CAS  PubMed  Google Scholar 

  • Sherman L, Sleeman J, Herrlich P, Ponta H (1994) Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 6:726–733

    CAS  PubMed  Google Scholar 

  • Shimizu-Hirota R, Sasamura H, Mifune M, Nakaya H, Kuroda M, Hayashi M, Saruta T (2001) Regulation of vascular proteoglycan synthesis by angiotensin II type 1 and type 2 receptors. J Am Soc Nephrol 12:2609–2615

    CAS  PubMed  Google Scholar 

  • Shinomura T, Jensen KL, Yamagata M, Kimata K, Solursh M (1990) The distribution of mesenchyme proteoglycan (PG-M) during wing bud outgrowth. Anat Embryol (Berl) 181:227–233

    CAS  Google Scholar 

  • Shinomura T, Nishida Y, Ito K, Kimata K (1993) DNA cloning of PG-M, a large chondroitin sulfate proteoglycan expressed during chondrogenesis in chick limb buds. Alternative spliced multiforms of PG-M and their relationship to versican. J Biol Chem 268:14461–14469

    CAS  PubMed  Google Scholar 

  • Shukla S, Nair R, Rolle MW, Braun KR, Chan CK, Johnson PY, Wight TN, McDevitt TC (2010) Synthesis and organization of hyaluronan and versican by embryonic stem cells undergoing embryoid body differentiation. J Histochem Cytochem 58:345–358

    CAS  PubMed  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    CAS  PubMed  Google Scholar 

  • Silver DL, Hou L, Somerville R, Young ME, Apte SS, Pavan WJ (2008) The secreted metalloprotease ADAMTS20 is required for melanoblast survival. PLoS Genet 4:e1000003

    PubMed  Google Scholar 

  • Simpson MA, Lokeshwar VB (2008) Hyaluronan and hyaluronidase in genitourinary tumors. Front Biosci 13:5664–5680

    CAS  PubMed  Google Scholar 

  • Singley CT, Solursh M (1981) The spatial distribution of hyaluronic acid and mesenchymal condensation in the embryonic chick wing. Dev Biol 84:102–120

    CAS  PubMed  Google Scholar 

  • Sleeman JP, Cremers N (2007) New concepts in breast cancer metastasis: tumor initiating cells and the microenvironment. Clin Exp Metastasis 24:707–715

    CAS  PubMed  Google Scholar 

  • Slomiany MG, Dai L, Tolliver LB, Grass GD, Zeng Y, Toole BP (2009a) Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma cells by small hyaluronan oligosaccharides. Clin Cancer Res 15:7593–7601

    CAS  PubMed  Google Scholar 

  • Slomiany MG, Grass GD, Robertson AD, Yang XY, Maria BL, Beeson C, Toole BP (2009b) Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res 69:1293–1301

    CAS  PubMed  Google Scholar 

  • Smith LS, Kajikawa O, Elson G, Wick M, Mongovin S, Kosco-Vilbois M, Martin TR, Frevert CW (2008) Effect of Toll-like receptor 4 blockade on pulmonary inflammation caused by mechanical ventilation and bacterial endotoxin. Exp Lung Res 34:225–243

    CAS  PubMed  Google Scholar 

  • Snow DM, Lemmon V, Carrino DA, Caplan AI, Silver J (1990) Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurol 109:111–130

    CAS  PubMed  Google Scholar 

  • Sobel RA, Ahmed AS (2001) White matter extracellular matrix chondroitin sulfate/dermatan sulfate proteoglycans in multiple sclerosis. J Neuropathol Exp Neurol 60:1198–1207

    CAS  PubMed  Google Scholar 

  • Somerville RP, Longpre JM, Jungers KA, Engle JM, Ross M, Evanko S, Wight TN, Leduc R, Apte SS (2003) Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J Biol Chem 278:9503–9513

    CAS  PubMed  Google Scholar 

  • Sommerville LJ, Kelemen SE, Autieri MV (2008) Increased smooth muscle cell activation and neointima formation in response to injury in AIF-1 transgenic mice. Arterioscler Thromb Vasc Biol 28:47–53

    CAS  PubMed  Google Scholar 

  • Stankunas K, Hang CT, Tsun ZY, Chen H, Lee NV, Wu JI, Shang C, Bayle JH, Shou W, Iruela-Arispe ML, Chang CP (2008) Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell 14:298–311

    CAS  PubMed  Google Scholar 

  • Stern R, Kogan G, Jedrzejas MJ, Soltes L (2007) The many ways to cleave hyaluronan. Biotechnol Adv 25:537–557

    CAS  PubMed  Google Scholar 

  • Stigson M, Lofberg J, Kjellen L (1997) PG-M/versican-like proteoglycans are components of large disulfide-stabilized complexes in the axolotl embryo. J Biol Chem 272:3246–3253

    CAS  PubMed  Google Scholar 

  • Strom A, Olin AI, Aspberg A, Hultgardh-Nilsson A (2006) Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration. Cardiovasc Res 69:755–763

    PubMed  Google Scholar 

  • Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354

    CAS  PubMed  Google Scholar 

  • Tammi R, Rilla K, Pienimaki JP, MacCallum DK, Hogg M, Luukkonen M, Hascall VC, Tammi M (2001) Hyaluronan enters keratinocytes by a novel endocytic route for catabolism. J Biol Chem 276:35111–35122

    CAS  PubMed  Google Scholar 

  • Taylor KR, Gallo RL (2006) Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20:9–22

    CAS  PubMed  Google Scholar 

  • Teder P, Vandivier RW, Jiang D, Liang J, Cohn L, Pure E, Henson PM, Noble PW (2002) Resolution of lung inflammation by CD44. Science 296:155–158

    CAS  PubMed  Google Scholar 

  • Thankamony SP, Knudson W (2006) Acylation of CD44 and its association with lipid rafts are required for receptor and hyaluronan endocytosis. J Biol Chem 281:34601–34609

    CAS  PubMed  Google Scholar 

  • Tien JY, Spicer AP (2005) Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patterns. Dev Dyn 233:130–141

    CAS  PubMed  Google Scholar 

  • Toole BP (1972) Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton. Dev Biol 29:321–329

    CAS  PubMed  Google Scholar 

  • Toole BP (1990) Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol 2:839–844

    CAS  PubMed  Google Scholar 

  • Toole BP (2001) Hyaluronan in morphogenesis. Semin Cell Dev Biol 12:79–87

    CAS  PubMed  Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    CAS  PubMed  Google Scholar 

  • Toole BP (2009) Hyaluronan-CD44 Interactions in cancer: paradoxes and possibilities. Clin Cancer Res 15:7462–7468

    CAS  PubMed  Google Scholar 

  • Toole BP, Slomiany MG (2008) Hyaluronan, CD44 and Emmprin: partners in cancer cell chemoresistance. Drug Resist Updat 11:110–121

    CAS  PubMed  Google Scholar 

  • Toole BP, Ghatak S, Misra S (2008) Hyaluronan oligosaccharides as a potential anticancer therapeutic. Curr Pharm Biotechnol 9:249–252

    CAS  PubMed  Google Scholar 

  • Touab M, Villena J, Barranco C, Arumi-Uria M, Bassols A (2002) Versican is differentially expressed in human melanoma and may play a role in tumor development. Am J Pathol 160:549–557

    CAS  PubMed  Google Scholar 

  • Tufvesson E, Westergren-Thorsson G (2000) Alteration of proteoglycan synthesis in human lung fibroblasts induced by interleukin-1beta and tumor necrosis factor-alpha. J Cell Biochem 77:298–309

    CAS  PubMed  Google Scholar 

  • Turley EA, Noble PW, Bourguignon LY (2002) Signaling properties of hyaluronan receptors. J Biol Chem 277:4589–4592

    CAS  PubMed  Google Scholar 

  • Turley EA, Veiseh M, Radisky DC, Bissell MJ (2008) Mechanisms of disease: epithelial-mesenchymal transition–does cellular plasticity fuel neoplastic progression? Nat Clin Pract Oncol 5:280–290

    CAS  PubMed  Google Scholar 

  • Tuttle R, Braisted JE, Richards LJ, O’Leary DD (1998) Retinal axon guidance by region-specific cues in diencephalon. Development 125:791–801

    CAS  PubMed  Google Scholar 

  • Vaday GG, Lider O (2000) Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J Leukoc Biol 67:149–159

    CAS  PubMed  Google Scholar 

  • Vaday GG, Franitza S, Schor H, Hecht I, Brill A, Cahalon L, Hershkoviz R, Lider O (2001) Combinatorial signals by inflammatory cytokines and chemokines mediate leukocyte interactions with extracellular matrix. J Leukoc Biol 69:885–892

    CAS  PubMed  Google Scholar 

  • Viapiano MS, Matthews RT (2006) From barriers to bridges: chondroitin sulfate proteoglycans in neuropathology. Trends Mol Med 12:488–496

    CAS  PubMed  Google Scholar 

  • Viapiano MS, Matthews RT, Hockfield S (2003) A novel membrane-associated glycovariant of BEHAB/brevican is up-regulated during rat brain development and in a rat model of invasive glioma. J Biol Chem 278:33239–33247

    CAS  PubMed  Google Scholar 

  • Viapiano MS, Hockfield S, Matthews RT (2008) BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion. J Neurooncol 88:261–272

    CAS  PubMed  Google Scholar 

  • Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    CAS  PubMed  Google Scholar 

  • Wang A, Hascall VC (2009) Hyperglycemia, intracellular hyaluronan synthesis, cyclin D3 and autophagy. Autophagy 5:864–865

    PubMed  Google Scholar 

  • Wang N, Tytell JD, Ingber DE (2009a) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82

    CAS  PubMed  Google Scholar 

  • Wang W, Xu GL, Jia WD, Ma JL, Li JS, Ge YS, Ren WH, Yu JH, Liu WB (2009b) Ligation of TLR2 by versican: a link between inflammation and metastasis. Arch Med Res 40:321–323

    PubMed  Google Scholar 

  • Wang X, Hu G, Zhou J (2010) Repression of versican expression by microRNA-143. J Biol Chem 285:23241–23250

    CAS  PubMed  Google Scholar 

  • Weigel PH, DeAngelis PL (2007) Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282:36777–36781

    CAS  PubMed  Google Scholar 

  • Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14:617–623

    Google Scholar 

  • Wight TN (2005) The ADAMTS proteases, extracellular matrix, and vascular disease: waking the sleeping giant(s)! Arterioscler Thromb Vasc Biol 25:12–14

    CAS  PubMed  Google Scholar 

  • Wight TN, Merrilees MJ (2004) Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res 94:1158–1167

    CAS  PubMed  Google Scholar 

  • Wight TN, Heinegård DK, Hascall VC (1991) Proteoglycans: structure and function. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum, New York, pp 45–78

    Google Scholar 

  • Wight TN, Lara S, Reissen R, LeBaron R, Isner J (1997) Selective deposits of versican in the extracellular matrix of restenotic lesions from human peripheral arteries. Am J Pathol 151:963–973

    CAS  PubMed  Google Scholar 

  • Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551–561

    CAS  PubMed  Google Scholar 

  • Wu Y, Zhang Y, Cao L, Chen L, Lee V, Zheng PS, Kiani C, Adams ME, Ang LC, Paiwand F, Yang BB (2001) Identification of the motif in versican G3 domain that plays a dominant-negative effect on astrocytoma cell proliferation through inhibiting versican secretion and binding. J Biol Chem 276:14178–14186

    CAS  PubMed  Google Scholar 

  • Wu Y, Chen L, Zheng PS, Yang BB (2002) beta 1-Integrin-mediated glioma cell adhesion and free radical-induced apoptosis are regulated by binding to a C-terminal domain of PG-M/versican. J Biol Chem 277:12294–12301

    CAS  PubMed  Google Scholar 

  • Wu Y, Chen L, Cao L, Sheng W, Yang BB (2004) Overexpression of the C-terminal PG-M/versican domain impairs growth of tumor cells by intervening in the interaction between epidermal growth factor receptor and β1-integrin. J Cell Sci 117:2227–2237

    CAS  PubMed  Google Scholar 

  • Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB (2005) The interaction of versican with its binding partners. Cell Res 15:483–494

    CAS  PubMed  Google Scholar 

  • Yamada H, Watanabe K, Shimonaka M, Yamaguchi Y (1994) Molecular cloning of brevican, a novel brain proteoglycan of the aggrecan/versican family. J Biol Chem 13:10119–10126

    Google Scholar 

  • Yamada H, Fredette B, Shitara K, Hagihara K, Miura R, Ranscht B, Stallcup WB, Yamaguchi Y (1997) The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons. J Neurosci 17:7784–7795

    CAS  PubMed  Google Scholar 

  • Yamagata M, Kimata K (1994) Repression of a malignant cell-substratum adhesion phenotype by inhibiting the production of the anti-adhesive proteoglycan, PG-M/versican. J Cell Sci 107:2581–2590

    CAS  PubMed  Google Scholar 

  • Yamagata M, Suzuki S, Akiyama SK, Yamada KM, Kimata K (1989) Regulation of cell-substrate adhesion by proteoglycans immobilized on extracellular substrates. J Biol Chem 264:8012–8018

    CAS  PubMed  Google Scholar 

  • Yamagata M, Saga S, Kato M, Bernfield M, Kimata K (1993) Selective distributions of proteoglycans and their ligands in pericellular matrix of cultured fibroblasts. Implications for their roles in cell-substratum adhesion. J Cell Sci 106:55–65

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y (1996) Brevican: a major proteoglycan in adult brain. Perspect Dev Neurobiol 3:307–317

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y (2000) Chondroitin sulfate proteoglycans in the nervous system. In: Iozzo R (ed) Proteoglycans-structure, functions and interactions. Marcel Dekker, New York, pp 379–402

    Google Scholar 

  • Yamamura H, Zhang M, Markwald RR, Mjaatvedt CH (1997) A heart segmental defect in the anterior-posterior axis of a transgenic mutant mouse. Dev Biol 186:58–72

    CAS  PubMed  Google Scholar 

  • Yang B, Yang BL, Savani RC, Turley EA (1994) Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. EMBO J 13:286–296

    PubMed  Google Scholar 

  • Yang BL, Zhang Y, Cao L, Yang BB (1999) Cell adhesion and proliferation mediated through the G1 domain of versican. J Cell Biochem 72:210–220

    CAS  PubMed  Google Scholar 

  • Yang BL, Yang BB, Erwin M, Ang LC, Finkelstein J, Yee AJ (2003) Versican G3 domain enhances cellular adhesion and proliferation of bovine intervertebral disc cells cultured in vitro. Life Sci 73:3399–3413

    CAS  PubMed  Google Scholar 

  • Yokoyama U, Minamisawa S, Quan H, Ghatak S, Akaike T, Segi-Nishida E, Iwasaki S, Iwamoto M, Misra S, Tamura K, Hori H, Yokota S, Toole BP, Sugimoto Y, Ishikawa Y (2006) Chronic activation of the prostaglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus. J Clin Invest 116:3026–3034

    CAS  PubMed  Google Scholar 

  • Zako M, Shinomura T, Ujita M, Ito K, Kimata K (1995) Expression of PG-M (V3), an alternatively spliced form of PG-M without a chondroitin sulfate attachment region in mouse and human tissues. J Biol Chem 270:3914–3918

    CAS  PubMed  Google Scholar 

  • Zako M, Shinomura T, Kimata K (1997) Alternative splicing of the unique “PLUS” domain of chicken PG- M/versican is developmentally regulated. J Biol Chem 272:9325–9331

    CAS  PubMed  Google Scholar 

  • Zhang H, Kelly G, Zerillo C, Jaworski DM, Hockfield S (1998) Expression of a cleaved brain-specific extracellular matrix protein mediates glioma cell invasion In vivo. J Neurosci 18:2370–2376

    CAS  PubMed  Google Scholar 

  • Zhang Y, Cao L, Kiani C, Yang BL, Hu W, Yang BB (1999) Promotion of chondrocyte proliferation by versican mediated by G1 domain and EGF-like motifs. J Cell Biochem 73:445–457

    CAS  PubMed  Google Scholar 

  • Zhang H, Baader SL, Sixt M, Kappler J, Rauch U (2004) Neurocan-GFP fusion protein: a new approach to detect hyaluronan on tissue sections and living cells. J Histochem Cytochem 52:915–922

    CAS  PubMed  Google Scholar 

  • Zhao X, Russell P (2005) Versican splice variants in human trabecular meshwork and ciliary muscle. Mol Vis 11:603–608

    CAS  PubMed  Google Scholar 

  • Zheng PS, Vais D, Lapierre D, Liang YY, Lee V, Yang BL, Yang BB (2004) PG-M/versican binds to P-selectin glycoprotein ligand-1 and mediates leukocyte aggregation. J Cell Sci 117:5887–5895

    CAS  PubMed  Google Scholar 

  • Zheng PS, Reis M, Sparling C, Lee DY, La Pierre DP, Wong CK, Deng Z, Kahai S, Wen J, Yang BB (2006) Versican G3 domain promotes blood coagulation through suppressing the activity of tissue factor pathway inhibitor-1. J Biol Chem 281:8175–8182

    CAS  PubMed  Google Scholar 

  • Zhuo L, Yoneda M, Zhao M, Yingsung W, Yoshida N, Kitagawa Y, Kawamura K, Suzuki T, Kimata K (2001) Defect in SHAP-hyaluronan complex causes severe female infertility. A study by inactivation of the bikunin gene in mice. J Biol Chem 276:7693–7696

    CAS  PubMed  Google Scholar 

  • Zimmermann D (2000) Versican. In: Iozzo R (ed) Proteoglycans: structure, biology and molecular interactions. Marcel Dekker, New York, pp 327–341

    Google Scholar 

  • Zimmermann DR, Dours-Zimmermann MT (2008) Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 130:635–653

    CAS  PubMed  Google Scholar 

  • Zimmermann DR, Ruoslahti E (1989) Multiple domains of the large fibroblast proteoglycan, versican. EMBO J 8:2975–2981

    CAS  PubMed  Google Scholar 

  • Zoltan-Jones A, Huang L, Ghatak S, Toole BP (2003) Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem 278:45801–45810

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This chapter was prepared with grant support from the National Heart, Lung and Blood Institute of the National Institutes of Health (#18645, 5RO1HL064387 to TNW) and from the National Cancer Institute (R01 CA073839 and R01 CA082867 to BPT). The authors wish to thank Dr. Virginia M. Green for careful editing and Dr. Michael G. Kinsella for helpful discussions in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas N. Wight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Wight, T.N., Toole, B.P., Hascall, V.C. (2011). Hyaluronan and the Aggregating Proteoglycans. In: Mecham, R. (eds) The Extracellular Matrix: an Overview. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16555-9_5

Download citation

Publish with us

Policies and ethics