Skip to main content

β-Adrenergic Receptor Subtypes in the Urinary Tract

  • Chapter
  • First Online:
Urinary Tract

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 2011))

Abstract

Within the urinary tract, β-adrenergic receptors (AR) are found largely on smooth muscle cells but are also present, at least in the bladder, in the urothelium and on afferent nerves. Our understanding of β-AR subtype expression and function is hampered by a lack of well-validated tools, particularly with regard to β3-AR. Moreover, the β-AR subtypes involved in a specific function may differ between species. In the ureter, β-AR can modulate pacemaker activity and smooth muscle tone involving multiple subtypes. In the human bladder, β-AR promote urine storage. Bladder smooth muscle relaxation primarily involves β3-AR, and the agonists selective for this subtype are in clinical development to treat bladder dysfunction. While prostate and urethra also express β-AR, the overall physiological role in these tissues remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa N, Igawa Y, Nishizawa O et al (2010) Effects of CL316, 243, a beta3-adrenoceptor agonist, and intravesical prostaglandin E2 on the primary bladder afferent activity of the rat. Neurourol Urodyn 29(5):771–776

    Article  CAS  PubMed  Google Scholar 

  • Badawi JK, Seja T, Uecelehan H et al (2007) Relaxation of human detrusor muscle by selective beta-2 and beta-3 agonists and endogenous catecholamines. Urology 69:785–790

    Article  PubMed  Google Scholar 

  • Bajor G (1980) Beta-blocking agent facilitating the spontaneous passage of ureteral stones. Int Urol Nephrol 22:33–36

    Article  Google Scholar 

  • Barendrecht MM, Frazier EP, Vrydag W et al (2009) The effect of bladder outlet obstruction on α1- and β-adrenoceptor expression and function. Neurourol Urodyn 28:349–355

    Article  CAS  PubMed  Google Scholar 

  • Biers SM, Reynard JM, Brading AF (2006) The effects of a new selective β3-adrenoceptor agonist (GW427353) on spontaneous activity and detrusor relaxation in human bladder. BJU Int 98:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Brown SM, Bentcheva-Petkova LM, Liu L et al (2008) β-Adrenergic relaxation of mouse urinary bladder smooth muscle in the absence of large-conductance Ca2+-activated K+-channel. Am J Physiol 295:F1149–F1157

    Article  CAS  Google Scholar 

  • Canda AE, Turna B, Cinar GM et al (2007) Physiology and pharmacology of the human ureter: basis for current and future treatments. Urol Int 78:289–298

    Article  PubMed  Google Scholar 

  • Carmena MJ, Clemente C, Carrero I et al (1997) G-Proteins and β-adrenergic stimulation of adenylate cyclase activity in the diabetic rat prostate. Prostate 33:46–54

    Article  CAS  PubMed  Google Scholar 

  • Chapple CR, Yamaguchi O, Ridder A et al (2008) Clinical proof of concept study (Blossom) shows novel β3 adrenoceptor agonist YM178 is effective and well tolerated in the treatment of symptoms of overactive bladder. Eur Urol Suppl 7:239–239

    Google Scholar 

  • Chapple C, Wyndaele J-J, van Kerrebroeck P et al (2010) Dose-ranging study of once-daily mirabegron (YM178), a novel selective β3-adrenoceptor agonist, in patients with overactive bladder (OAB). Eur Urol Suppl 9:249–249

    Article  Google Scholar 

  • Collins S, Quarmby VE, French FS et al (1988) Regulation of the β2-adrenergic receptor and its mRNA in the rat ventral prostate by testosterone. FEBS Lett 233:173–176

    Article  CAS  PubMed  Google Scholar 

  • Danuser H, Weiss R, Abel D et al (2001) Systemic and topical drug administration in the pig ureter: effect of phosphodiesterase inhibitors α1, β and β2-adrenergic receptor agonists and antagonists on the frequency and amplitude of ureteral contractions. J Urol 166:714–720

    Article  CAS  PubMed  Google Scholar 

  • Drescher P, Eckert RE, Madsen PO (1994) Smooth muscle contractility in prostatic hyperplasia: role of cyclic adenosine monophosphate. Prostate 25:76–80

    Article  CAS  PubMed  Google Scholar 

  • Durant PA, Lucas PC, Yaksh TL (1988) Micturition in the unanaesthetized rat: spinal vs. peripheral pharmacology of the adrenergic system. J Pharmacol Exp Ther 245:426–435

    CAS  PubMed  Google Scholar 

  • Ehlert FJ, Ahn S, Pak KJ et al (2007) Neuronally release acetylcholine acts on the M2 muscarinic receptor to oppose the relaxant effect of isoproterenol on cholinergic contractions in mouse urinary bladder. J Pharmacol Exp Ther 322:631–637

    Article  CAS  PubMed  Google Scholar 

  • Frazier EP, Schneider T, Michel MC (2006) Effects of gender, age and hypertension on β-adrenergic receptor function in rat urinary bladder. Naunyn-Schmiedeberg’s Arch Pharmacol 373:300–309

    Article  CAS  Google Scholar 

  • Frazier EP, Peters SLM, Braverman AS et al (2008) Signal transduction underlying control of urinary bladder smooth muscle tone by muscarinic receptors and β-adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 377:449–462

    Article  CAS  Google Scholar 

  • Fukumoto Y, Yoshida M, Dokita S et al (1993) The reversal effect of insulin on diabetes-induced alterations in beta adrenergic and muscarinic receptors in rat prostate. J Urol 149:1602–1607

    CAS  PubMed  Google Scholar 

  • Garcia-Sacristan A, Casanueva CR, Castilla C et al (1984) Adrenergic receptors in the urethra and prostate of the horse. Res Vet Sci 36:57–60

    CAS  PubMed  Google Scholar 

  • Goepel M, Wittmann A, Rübben H et al (1997) Comparison of adrenoceptor subtype expression in porcine and human bladder and prostate. Urol Res 25:199–206

    Article  CAS  PubMed  Google Scholar 

  • Gousse A, Yoshida M, Weiss RM et al (1991) Beta adrenergic receptor alterations in diabetic rat prostate: effects of insulin and dietary myoinositol. Prostate 19:121–131

    Article  CAS  PubMed  Google Scholar 

  • Gruneberger A (1984) Treatment of motor urge incontinence with clenbuterol and flavoxate hydrochloride. Br J Obst Gynaecol 91:275–278

    Article  CAS  Google Scholar 

  • Guthrie PD, Freeman MR, Liao ST et al (1990) Regulation of gene expression in rat prostate by androgen and β-adrenergic receptor pathways. Mol Endocrinol 4:1343–1353

    Article  CAS  PubMed  Google Scholar 

  • Hamdani N, van der Velden J (2009) Lack of specificity of antibodies directed against human beta-adrenergic receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 379:403–407

    Article  CAS  Google Scholar 

  • Haynes JM, Hill SJ (1997) β-Adrenoceptor-mediated inhibition of α1-adrenoceptor-mediated and field stimulation-induced contractile responses in the prostate of the guinea pig. Br J Pharmacol 122:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Hernandez M, Prieto D, Simonsen U et al (1992) Noradrenaline modulates smooth muscle activity of the isolated intravesical ureter of the pig through different types of adrenoceptors. Br J Pharmacol 107:931

    Google Scholar 

  • Hicks A, McCafferty GP, Riedel E et al (2007) GW427353 (solabegron), a novel, selective β3-adrenergic receptor agonist, evokes bladder relaxation and increases micturition reflex threshold in the dog. J Pharmacol Exp Ther 323:202–209

    Article  CAS  PubMed  Google Scholar 

  • Hristov KL, Cui X, Brown SM et al (2008) Stimulation of β3-adrenoceptor relaxes rat urinary bladder smooth muscle via activation of the large-conductance Ca2+-activated K+ channels. Am J Physiol 295:C1344–C1353

    Article  CAS  Google Scholar 

  • Hudman D, Elliott RA, Whitakker P et al (2001) Inhibition of the contractile responses of isolated human and rat bladders by clenbuterol. J Urol 166:1969–1973

    Article  CAS  PubMed  Google Scholar 

  • Igawa Y, Yamazaki Y, Takeda H et al (1998) Possible β3-adrenoceptor-mediated relaxation of the human detrusor. Acta Physiol Scand 164:117–118

    Article  CAS  PubMed  Google Scholar 

  • Igawa Y, Yamazaki Y, Takeda H et al (2001) Relaxant effects of isoproterenol and selective β3-adrenoceptor agonists on normal, low compliant and hyperreflexic human bladders. J Urol 165:240–244

    Article  CAS  PubMed  Google Scholar 

  • Imanishi M, Tomishima Y, Itou S et al (2008) Discovery of a novel series of biphenyl benzoic acid derivatives as potent and selective human β3-adrenergic receptor agonists with good oral bioavailability. Part I. J Med Chem 51:1925–1944

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Norby B, Frimodt-Moller PC et al (2008) Endoluminal isoproterenol irrigation decreases renal pelvic pressure during flexible ureteroscopy: a clinical, randomized, controlled study. Eur Urol 54:1404–1413

    Article  PubMed  Google Scholar 

  • Kaidoh K, Igawa Y, Takeda H et al (2002) Effects of selective β2 and β3-adrenoceptor agonists in detrusor hyperreflexia in conscious cerebral infarcted rats. J Urol 168:1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Kalodimos PJ, Ventura S (2001) β2-Adrenoceptor-mediated inhibition of field stimulation induced contractile responses of the smooth muscle of the rat prostate gland. Eur J Pharmacol 431:81–89

    Article  CAS  PubMed  Google Scholar 

  • Klausner AP, Rourke KF, Miner AS et al (2009) Potentiation of carbachol-induced detrusor smooth muscle contractions by β-adrenoceptor activation. Eur J Pharmacol 606:191–198

    Article  CAS  PubMed  Google Scholar 

  • Labadia A, Rivera L, Costa G et al (1987) Alpha- and beta-adrenergic receptors in the horse ureter. Rev Esp Fisiol 43:421–425

    CAS  PubMed  Google Scholar 

  • Leon LA, Hoffman BE, Gardner SD et al (2008) Effects of the β3-adrenergic receptor agonist disodium 5[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1, 3-benzodioxole-2, 2, dicarboxylate (L-316243) on bladder micturition reflex in spontaneously hypertensive rats. J Pharmacol Exp Ther 326:178–185

    Article  CAS  PubMed  Google Scholar 

  • Levin RM, Wein AJ (1979) Quantitative analysis of alpha and beta adrenergic receptor densities in the lower urinary tract of the dog and the rabbit. Invest Urol 17:75–77

    CAS  PubMed  Google Scholar 

  • Lindholm P, Lose G (1986) Terbutaline (Bricanyl) in the treatment of female urge incontinence. Urol Int 41:158–160

    Article  CAS  PubMed  Google Scholar 

  • Mayo ME, Halbert SA (1981) The effect of autonomic drugs on ureteric peristalsis: a canine in vivo study. Urol Res 9:209–216

    Article  CAS  PubMed  Google Scholar 

  • McLeod DG, Reynolds DG, Swan KG (1973) Adrenergic mechanisms in the canine ureter. Am J Physiol 224:1054–1058

    CAS  PubMed  Google Scholar 

  • Meister B, Dagerlind A, Nicholas AP et al (1994) Patterns of messenger RNA expression for adrenergic receptor subtypes in rat kidney. J Pharmacol Exp Ther 268:1605–1611

    CAS  PubMed  Google Scholar 

  • Michel MC, Barendrecht MM (2008) Physiological and pathological regulation of the autonomic control of urinary bladder contractility. Pharmacol Ther 117:297–312

    Article  CAS  PubMed  Google Scholar 

  • Michel MC, Chapple CR (2009) Basic mechanisms of urgency: basic and clinical evidence. Eur Urol 56:298–308

    Article  PubMed  Google Scholar 

  • Michel MC, Parra S (2008) Similarities and differences in the autonomic control of airway and urinary bladder smooth muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 378:217–224

    Article  CAS  Google Scholar 

  • Michel MC, Sand C (2009) Effect of pre-contraction on β-adrenoceptor-mediated relaxation of rat urinary bladder. World J Urol 27:711–715

    Article  CAS  Google Scholar 

  • Michel MC, Vrydag W (2006) α1-, α2- and β-adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol 147:S88–S119

    Article  CAS  PubMed  Google Scholar 

  • Miyatake R, Tomiyama Y, Murakami M et al (2001) Effects of isoproterenol and butylscopolamine on the friction between an artificial stone and the intraureteral wall in anaesthetized rabbits. J Urol 166:1083–1087

    Article  CAS  PubMed  Google Scholar 

  • Monica FZT, Bricola AAO, Bau FR et al (2008) Long-term nitric oxide deficiency causes muscarinic supersensitivity and reduces β3-adrenoceptor-mediated relaxation, causing rat detrusor overactivity. Br J Pharmacol 153:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Mori A, Miwa T, Sakamoto K et al (2010) Pharmacological evidence for the presence of functional β3-adrenoceptors in rat retinal blood vessels. Naunyn-Schmiedeberg’s Arch Pharmacol 382(2):119–126

    Article  CAS  Google Scholar 

  • Morita T, Suzuki T (1984) Effects of beta-adrenergic agents on the pacemaker of ureteral peristalsis. Urol Int 39:154–158

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Ando M, Kihara K et al (1994) Function and distribution of autonomic receptors in canine ureteral smooth muscle. Neurourol Urodyn 13:315–321

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Tomiyama Y, Hayakawa K et al (2000) Effects of β-adrenergic stimulation on acutely obstructed ureter in dogs. J Pharmacol Exp Ther 292:67–75

    CAS  PubMed  Google Scholar 

  • Murakami S, Chapple CR, Akino H et al (2007) The role of the urothelium in mediating bladder responses to isoprenaline. BJU Int 99:669–673

    Article  CAS  PubMed  Google Scholar 

  • Nomiya M, Yamaguchi O (2003) A quantitative analysis of mRNA expression of α1 and β-adrenoceptor subtypes and their functional roles in human normal and obstructed bladders. J Urol 170:649–653

    Article  CAS  PubMed  Google Scholar 

  • Normandin DE, Lodge NJ (1996) Pharmacoalogical characterization of the isolated canine prostate. J Urol 155:1758–1761

    Article  CAS  PubMed  Google Scholar 

  • Oostendorp J, Preitner F, Moffatt J et al (2000) Contribution of β-adrenoceptor subtypes to relaxation of colon and oesophagus and pacemaker activity of ureter in wild-type and β3-adrenoceptor knockout mice. Br J Pharmacol 130:747–758

    Article  CAS  PubMed  Google Scholar 

  • Otsuka A, Shinbo H, Hasebe K et al (2008a) Effects of a novel β3-adrenoceptor agonist, AJ-9677, on relaxation of the detrusor muscle: an in vitro study. Int J Urol 15:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Otsuka A, Shinbo H, Matsumoto R et al (2008b) Expression and functional role of β-adrenoceptors in the human urinary bladder. Naunyn-Schmiedeberg’s Arch Pharmacol 377:473–481

    Article  CAS  Google Scholar 

  • Palm D, Lang K, Niggemann B et al (2006) The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by β-blockers. Int J Cancer 118:2744–2749

    Article  CAS  PubMed  Google Scholar 

  • Park Y-C, Tomiyama Y, Hayakawa K et al (2000) Existence of a β3-adrenoceptor and its functional role in the human ureter. J Urol 164:1364–1370

    Article  CAS  PubMed  Google Scholar 

  • Peters HJ, Parekh N, Popa G (1979) Effects of adrenergic and cholinergic agents on ureteral functions in dogs. Urol Int 34:137–146

    Article  CAS  PubMed  Google Scholar 

  • Poyet P, Gagne B, Labrie F (1986) Characteristics of the β-adrenergic stimulation of adenylate cyclase activity in rat ventral prostate and its modulation by androgens. Prostate 9:237–245

    Article  CAS  PubMed  Google Scholar 

  • Pradidarcheep W, Stallen J, Labruyere WT et al (2009) Lack of specificity of commercially available antisera against muscarinic and adrenergic receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 379:397–402

    Article  CAS  Google Scholar 

  • Purvis K, Rui H, Gordeladze JO et al (1986) Hormonal activation of the adenylyl cyclases of the rat and human prostate gland. Prostate 8:11–24

    Article  CAS  PubMed  Google Scholar 

  • Springer JP, Kropp BP, Thor KB (1994) Facilitatory and inhibitory effects of selective norepinephrine reuptake inhibitors on hypogastric nerve-evoked urethral contractions in the cat: a prominent role of urethral β-adrenergic receptors. J Urol 152:515–519

    CAS  PubMed  Google Scholar 

  • Takasu T, Ukai M, Sato S et al (2007) Effect of YM178, a novel selective β3-adrenoceptor agonist, on bladder function. J Pharmacol Exp Ther 321:642–647

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Obara K, Mizusawa T et al (1999) Evidence for β3-adrenoceptor subtypes in relaxation of the human urinary bladder detrusor: analysis by molecular biological and pharmacologocial methods. J Pharmacol Exp Ther 288:1367–1373

    CAS  PubMed  Google Scholar 

  • Takeda H, Yamazaki Y, Igawa Y et al (2002) Effects of β3-adrenoceptor stimulation on prostaglandin E2-induced bladder hyperreactivity and on the cardiovascular system in conscious rats. Neurourol Urodyn 21:558–565

    Article  CAS  PubMed  Google Scholar 

  • Takeda H, Matsuzawa A, Igawa Y et al (2003) Functional characterization of β-adrenoceptor subtypes in the canine and rat lower urinary tract. J Urol 170:654–658

    Article  CAS  PubMed  Google Scholar 

  • Takemoto J, Masumiya H, Nunoki K et al (2008) Potentiation of potassium currents by beta-adrenoceptor agonists in human urinary bladder smooth muscle cells: a possible electrical mechanism of relaxation. Pharmacology 81:251–258

    Article  CAS  PubMed  Google Scholar 

  • Thind P, Lose G, Colstrup H et al (1993a) The effect of pharmacological stimulation and blockade of autonomic receptors on the urethral pressure and power generation during coughing and squeezing of the pelvic floor in healthy females. Scand J Urol Nephrol 27:519–525

    Article  CAS  PubMed  Google Scholar 

  • Thind P, Lose G, Colstrup H et al (1993b) The influence of β-adrenoceptor and muscarinic receptor agonists and antagonists on the static urethral closure function in healthy females. Scand J Urol Nephrol 27:31–38

    Article  CAS  PubMed  Google Scholar 

  • Tindall AR (1972) Preliminary observations on the mechanical and electrical activity of the rat ureter. J Physiol (London) 223:633–647

    CAS  Google Scholar 

  • Tomiyama Y, Hayakawa K, Shinagawa K et al (1998) β-Adrenoceptor subtypes in the ureteral smooth muscle of rats, rabbits and dogs. Eur J Pharmacol 352:269–278

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama Y, Murakami M, Hayakawa K et al (2003a) Pharmacological profile of KUL-7211, a selective β-adrenoceptor agonist, in isolated ureteral smooth muscle. J Pharmacol Sci 92:411–419

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama Y, Murakami M, Yamazaki Y et al (2003b) Comparison between CL-316243- and CGP-12177A-induced relaxations in isolated canine ureter. Pharmacology 68:140–146

    Article  CAS  PubMed  Google Scholar 

  • Tsujii T, Azuma H, Yamaguchi T et al (1992) A possible role of decreased relaxation mediated by β-adrenoceptors in bladder outlet obstruction by benign prostatic hypertrophy. Br J Pharmacol 107:803–807

    CAS  PubMed  Google Scholar 

  • Tyagi P, Thomas CA, Yoshimura N et al (2009) Investigations into the presence of functional β1, β2 and β3-adrenoceptors in urothelium and detrusor of human bladder. Int Braz J Urol 35:76–83

    Article  PubMed  Google Scholar 

  • Tzortzis V, Mamoulakis C, Rioja J et al (2009) Medical expulsive therapy for distal ureteral stones. Drugs 69:677–692

    Article  CAS  PubMed  Google Scholar 

  • Ursino MG, Vasina V, Raschi E et al (2009) The β3-adrenoceptor as a therapeutic target: current perspectives. Pharmacol Res 59:221–234

    Article  CAS  PubMed  Google Scholar 

  • Vrydag W, Michel MC (2007) Tools to study β3-adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 374:385–398

    Article  CAS  Google Scholar 

  • Vrydag W, Alewijnse AE, Michel MC (2008) Do gene polymorphisms alone or in combination affect the function of human β3-adrenoceptors? Br J Pharmacol 156:127–134

    Article  Google Scholar 

  • Wanajo I, Tomiyama Y, Yamazaki Y et al (2004) Pharmacological characterization of β-adrenoceptor subtypes mediating relaxation in porcine isolated utereral smooth muscle. J Urol 172:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Wanajo I, Tomiyama T, Tadachi M et al (2005) The potency of KUL-7211, a selective ureteral relaxant, in isolated canine ureter: comparison with various spasmolytics. Urol Res 33:409–414

    Article  CAS  PubMed  Google Scholar 

  • Weiss RM, Basset AL, Hoffman BF (1978) Adrenergic innervation of the ureter. Invest Urol 16:123–127

    CAS  PubMed  Google Scholar 

  • Witte LPW, de Haas N, Mammen M et al (2009) Roles of M2 and M3 muscarinic receptors in the modulation of β-adrenoceptor-mediated relaxation of the rat urinary bladder. pA2 online 6:http://www.pA2online.org/abstracts/Vol6Issue4abst053.pdf

  • Wuest M, Eichhorn B, Grimm MO et al (2009) Catecholamines relax detrusor through β2-adrenoceptors in mouse and β3-adrenoceptors in man. J Pharmacol Exp Ther 328:213–222

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Koike K (2000) The effects of β-adrenoceptor agonists on KCl-induced rhythmic contraction in the ureter of guinea pig. J Smooth Muscle Res 36:13–19

    Article  CAS  PubMed  Google Scholar 

  • Yamanishi T, Yasuda K, Kitahara S et al (2006) Effects of 138-355, a β3-adrenoceptor selective agonist, on relaxation of the human detrusor muscle in vitro. Neurourol Urodyn 25:815–819

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Tatemichi S, Maruyama I et al (2002) Characterization of KUC-7483 and its active metabolite, KUC-7322, a selective beta3-adrenoceptor agonist, on bladder function in rats. https://www.icsoffice.org/publications/2002/pdf/095.pdf

  • Yoshikawa S, Kanie S, Kobayashi R et al (2009) TRK-380, a novel B3-adrenoceptor (AR) agonist, decreases voiding frequency in rats with formalin-induced pollakiuria and suppresses the non-voiding contractions (NVCS) in bladder outlet obstruction (BOO). https://www.icsoffice.org/ASPNET_Membership/Membership/Abstracts/Publish/47/000505.pdf

  • Yoshikawa S, Morimoto T, Okazaki S et al (2009) TRK-380, a novel B3-adrenoceptor (AR) agonist with potent agonistic activity, functionally relaxes detrusor strips in some species including humans. https://www.icsoffice.org/ASPNET_Membership/Membership/Abstracts/Publish/47/000502.pdf

Download references

Acknowledgments

Work in the author’s lab has been supported by grants from the Deutsche Forschungsgemeinschaft, Coordination Theme 1 (Health) of the European Community’s FP7, Grant agreement number HEALTH-F2-2008-223234, Astellas and Boehringer Ingelheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michel, M.C. (2011). β-Adrenergic Receptor Subtypes in the Urinary Tract. In: Andersson, KE., Michel, M. (eds) Urinary Tract. Handbook of Experimental Pharmacology, vol 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16499-6_15

Download citation

Publish with us

Policies and ethics