Skip to main content

Introduction to Seismic Electric Signals

  • Chapter
  • First Online:
Book cover Natural Time Analysis: The New View of Time

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

In the early 1980s, Varotsos and Alexopoulos showed that when the pressure (stress) on an ionic solid reaches a critical value, a cooperative orientation of the electric dipoles (that anyhow exist due to lattice defects) may occur, which results in the emission of a transient electric signal. This may happen before an earthquake since the stress gradually increases in the focal region before rupture. Thus, a detailed experimentation started in Greece in 1981, which showed that actually transient variations of the electric field of the Earth, termed seismic electric signals (SES), are observed before major earthquakes. In the meantime, several other SES generation mechanisms have been proposed. The field experiments revealed the physical properties of SES including those that SES can be observed only at certain points of the Earth’s surface called “sensitive points” and that their amplitude is interrelated with the magnitude of the impending earthquake. Each sensitive station enables the detection of SES only from a restricted number of seismic areas, a phenomenon termed “selectivity effect”, which provides the basis for the determination of the epicenter of an impending earthquake. These physical properties can be theoretically explained on the basis of Maxwell equations, if we take into account that the earthquakes occur by slip on pre-existing faults and that the faults constitute conductive paths (electrical inhomogeneities) in the solid Earth’s crust. Finally, the observed SES activities, which are series of SES observed within a short time, as well as the associated magnetic field variations, exhibit scale invariance over four orders of magnitude. This is consistent with the original model suggested by Varotsos and Alexopoulos for the SES generation according to which SES should be characterized by critical dynamics which is always accompanied by scale invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonopoulos, G., Kopanas, J., Eftaxias, K., Hadjicontis, V.: On the experimental evidence of SES vertical component. Tectonophysics 224, 47–49 (1993)

    Article  Google Scholar 

  2. Ashkenazy, Y., Hausdorff, J.M., Ivanov, P.C., Stanley, H.E.: A stochastic model of human gait dyn mics. Physica A 316, 662–670 (2002)

    Article  Google Scholar 

  3. Ashkenazy, Y., Ivanov, P.C., Havlin, S., Peng, C.K., Yamamoto, Y., Goldberger, A.L., Stanley, H.E.: Decomposition of heartbeat time series: Scaling analysis of the sign sequence. Comput. Cardiol. 27, 139–143 (2000)

    Google Scholar 

  4. Ausloos, M., Vandewalle, N., Boveroux, P., Minguet, A., Ivanova, K.: Applications of statistical physics to economic and financial topics. Physica A 274, 229–240 (1999)

    Article  Google Scholar 

  5. Bartsch, R., Plotnik, M., Kantelhardt, J.W., Havlin, S., Giladi, N., Hausdorff, J.M.: Fluctuation an synchronization of gait intervals and gait force profiles distinguish stages of Parkinson’s disease. Physica A 383, 455–465 (2007)

    Article  Google Scholar 

  6. Bashan, A., Bartsch, R., Kantelhardt, J.W., Havlin, S.: Comparison of detrending methods for fluctuation analysis. Physica A 387, 5080–5090 (2008)

    Article  Google Scholar 

  7. Bernard, P.: Plausibility of long distance electrotelluric precursors to earthquakes. J. Geophys. Res. 97, 17,531–17,546 (1992)

    Google Scholar 

  8. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis (3rd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ (1994)

    Google Scholar 

  9. Brace,W.F., Byerlee, J.D.: Stick slip as a mechanism for earthquakes. Science 153, 990–992 (1966) 10. Bray, A.J.: Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459 (1994)

    Google Scholar 

  10. Bray, A.J., Briant, A.J., Jervis, D.K.: Breakdown of scaling in the nonequilibrium critical dynamics of the two-dimensional XY model. Phys. Rev. Lett. 84, 1503–1506 (2000)

    Article  Google Scholar 

  11. Bunde, A., Havlin, S., Kantelhardt, J.W., Penzel, T., Peter, J.H., Voigt, K.: Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys. Rev. Lett. 85, 3736–3739 (2000)

    Article  Google Scholar 

  12. Burton, P.W.: Dicing with earthquakes. Geophys. Res. Lett. 23, 1379–1382 (1996)

    Article  Google Scholar 

  13. Chester, F.M., Evans, J.P., Biegel, R.L.: nternal structure and weakening mechanisms of the San Andreas fault. J. Geophys. Res. 98, 771–786 (1993)

    Article  Google Scholar 

  14. Cremer, D.: General and theoretical aspects of the peroxide group, in The Chemistry of Functional Groups, Peroxides, ed. S. Patai. John Wiley, New York (1983)

    Google Scholar 

  15. Dobrovolsky, I.P., Gershenzon, N.L., Gokhberg, M.B.: Theory of electrokinetic effect occurring at the final state in the preparation of a tectonic earthquake. Phys. Earth Planet. Inter. 57, 144–156 (1989)

    Article  Google Scholar 

  16. Dukhin, S.S., Derjaguin, B.V.: Electrokinetic Phenomena. John Wiley & Sons, New York (1974)

    Google Scholar 

  17. Edwards, R.N., Nabighian, M.N.: The magnetometric resistivity method. In: Nambighian (ed.) Electromagnetic methods in Applied Geophysics, Vol. 2, pp. 43–104. SEG, Tulsa, Oklahoma (1996)

    Google Scholar 

  18. Ernst, R., Head, J.W., Parfitt, E., Grosfils, E., Wilson, L.: Giant radiating dyke swarms on Earth and Venus. Earth Science Reviews 39, 1–58 (1995)

    Article  Google Scholar 

  19. Fenoglio, M.A., Johnston, M.J.S., Byerlee, J.: Magnetic and electric fields associated with changes in high pore pressure in fault zones, application to the Loma Prieta ULF emissions. J. Geophys. Res. 100, 12,951–12,958 (1995)

    Google Scholar 

  20. Fischbach, D., Nowick, A.: Some transient electrical effects of plastic deformation in NaCl crystals. J. Phys. Chem. Solids 5, 302–315 (1958)

    Article  Google Scholar 

  21. Fischbach, D.B., Nowick, A.S.: Deformation-induced charge flow in NaCl crystals. Phys. Rev. 99, 1333–1334 (1955)

    Article  Google Scholar 

  22. Fitterman, D.V.: Theory of electrokinetic and magnetic anomalies associated with dilatant regions in a layered Earth. J. Geophys. Res. 83, 5923–5928 (1978)

    Article  Google Scholar 

  23. Fitterman, D.V.: Calculation of self-potential anomalies near vertical contacts. Geophys. 44, 195– 205 (1979)

    Article  Google Scholar 

  24. Fraser-Smith, A.C., Bernardi, A., McGill, P.R., Ladd, M.E., Helliwell, R.A., Villard, O.G.: Lowfrequency magnetic-field measurements near the epicenter of the Ms-7.1 Loma Prieta earthquake. Geophys. Res. Lett. 17, 1465–1468 (1990)

    Google Scholar 

  25. Freund, F.: Hydrogen and carbon in solid solution in oxides and silicates. Phys. Chem. Minerals 15, 1–18 (1987)

    Article  Google Scholar 

  26. Freund, F.: Earthquake prediction is worthy of study. EOS Trans. AGU 80, 230–232 (1999)

    Article  Google Scholar 

  27. Freund, F.: Charge generation and propagation in igneous rocks. J. Geodynamics 33, 543–570 (2002)

    Article  Google Scholar 

  28. Freund, F., Freund, M.M., Battlo, F.: Critical review of electrical conductivity measurements and charge distribution analysis of magnesium oxide. J. Geophys. Res. 98(B12), 22,209–22,229 (1993)

    Google Scholar 

  29. Freund, F., Whang, E.J., Jonathan, L.: Highly mobile hole charge carries in minerals: Key to the enigmatic electrical earthquake phenomena? In: M. Hayakawa, Y. Fujinawa (eds.) Electromagnetic Phenomena Related to Earthquake Prediction, pp. 271–291. TerraPub, Tokyo (1994)

    Google Scholar 

  30. Freund, M.M., Freund, F., Battlo, F.: Highly mobile oxygen holes in magnesium oxide. Phys. Rev. Lett. 63, 2096–2099 (1989)

    Article  Google Scholar 

  31. Gershenzon, N., Gokhberg, M.: On the origin of electrotelluric disturbances prior to an earthquake in Kalamata, Greece. Tectonophysics 224, 169–174 (1993)

    Article  Google Scholar 

  32. Gueguen, Y., Palciauskas, V.: Introduction to the Physics of Rocks. Princeton University Press, New Jersey (1994)

    Google Scholar 

  33. Guterman, V.G., Khazan, Y.M.: A possible mechanism of strong shallow earthquake preparation. Geophys. J. 16, 22–29 (1994)

    Google Scholar 

  34. Hanks, T.C., Kanamori, H.: Moment magnitude scale. J. Geophys. Res. 84(B5), 2348 (1979)

    Google Scholar 

  35. Hern´adez-P´erez, R., Guzm´an-Vargas, L., Ram´ırez-Rojas, A., Angulo-Brown, F.: Pattern synchrony in electrical signals related to earthquake activity. Physica A 389, 1239–1252 (2010)

    Google Scholar 

  36. Hoversten, G.M., Becker, A.: EM1DSH with EMMODEL a Motif GUI, Numerical Modeling of multiple thin 3D sheets in a layered earth, University of California at Berkeley, Engineering Geoscience Department, June 12, 1995.

    Google Scholar 

  37. Hu, K., Ivanov, P.C., Chen, Z., Carpena, P., Stanley, H.E.: Effect of trends on detrended fluctuation analysis. Phys. Rev. E 64, 011114 (2001)

    Article  Google Scholar 

  38. Hu, K., Ivanov, P.C., Chen, Z., Hilton, M.F., Stanley, H.E., Shea, S.A.: Non-random fluctuations and multi-scale dynamics regulation of human activity. Physica A 337, 307–318 (2004)

    Article  Google Scholar 

  39. Ikeya, M., Kinoshita, Y., Matsumoto, H., Takaki, S., Yamanaka, C.: A model experiment of electromagnetic wave propagation over long distances using waveguide terminology. Jpn. J. Appl. Phys. 36, 1558–1561 (1997)

    Article  Google Scholar 

  40. Ikeya, M., Takaki, S., Matsumoto, H., Tani, A., Komatsu, T.: Pulsed charge model of fault behavior producing Seismic Electric Signals (SES). J. Circuit, Systems and Computers 7, 153–164 (1997)

    Google Scholar 

  41. Ishido, T., Mizutani, H.: Experimental and theoretical basis of electrokinetic phenomena in rockwater systems and its applications to Geophysics. J. Geophys. Res. 86, 1763–1775 (1981)

    Article  Google Scholar 

  42. Ishido, T., Pritchett, J.W.: Numerical simulation of electrokinetic potentials associated with subsurface fluid flow. J. Geophys. Res. 104(B7), 15,247–15,260 (1999)

    Google Scholar 

  43. Ivanov, P.C.: Scale-invariant aspects of cardiac dynamics – observing sleep stages and circadian phases. IEEE Eng. Med. Biol. 26, 33–37 (2007)

    Article  Google Scholar 

  44. Ivanov, P.C., Ma, Q.D.Y., Bartsch, R.P., Hausdorff, J.M., Nunes Amaral, L.A., Schulte-Frohlinde, V., Stanley, H.E., Yoneyama, M.: Levels of complexity in scale-invariant neural signals. Phys. Rev. E 79, 041920 (2009)

    Article  Google Scholar 

  45. Ivanov, P.C., Yuen, A., Podobnik, B., Lee, Y.: Common scaling patterns in intertrade times of U. S. stocks. Phys. Rev. E 69, 056107 (2004)

    Google Scholar 

  46. Ivanova, K., Ausloos, M.: Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking. Physica A 274, 349–354 (1999)

    Article  Google Scholar 

  47. Jouniaux, L., Pozzi, J.P.: Streaming potential and permeability of saturated sandstones under triaxial stress: Consequences for electrotelluric anomalies prior to earthquakes. J. Geophys. Res. 100(B6), 10,197–10,209 (1995)

    Google Scholar 

  48. Jouniaux, L., Pozzi, J.P.: Laboratory measurements anomalous 0.1–0.5 Hz streaming potential under geochemical changes: Implications for electrotelluric precursors to earhquakes. J. Geophys. Res. 102(B7), 15,335–15,343 (1997)

    Google Scholar 

  49. Kanamori, H., Anderson, D.L.: Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am. 65, 1073–1096 (1975)

    Google Scholar 

  50. Kantelhardt, J.W., Koscielny-Bunde, E., Rego, H.H.A., Havlin, S., Bunde, A.: Detecting long-range correlations with detrended fluctuation analysis. Physica A 295, 441–454 (2001)

    Article  Google Scholar 

  51. Karakelian, D., Beroza, G.C., Klemperer, S.L., Fraser-Smith, A.C.: Analysis of ultralow-frequency electromagnetic field measurements associated with the 1999 M 7.1 Hector Mine, California, earthquake sequence. Bull. Seism. Soc. Am. 92, 1513–1524 (2002)

    Google Scholar 

  52. Kondo, S., Uyeda, S., Nagao, T.: The selectivity of the Ioannina VAN station. J. Geodynamics 33, 433–461 (2002)

    Article  Google Scholar 

  53. Kou, S.C., Xie, X.S.: Generalized langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, 180603 (2004)

    Article  Google Scholar 

  54. Lazarus, D.: Short term earthquake prediction in Greece by Seismic Electric Signals. In: Sir J. Lighthill (ed.) The Critical Review of VAN: Earthquake Prediction from Seismic Electric Signals, pp. 91–96. World Scientific, Singapore (1996)

    Google Scholar 

  55. Li, M., Lim, S.C.: A rigorous derivation of power spectrum of fractional Gaussian noise. Fluctuation and Noise Letters (FNL) 6, C33–C36 (2006)

    Google Scholar 

  56. Li, M., Lim, S.C.: Fractional Gaussian noise and network traffic modeling. In: Chen, S. Y. and Li, Q. (ed.) The 8th WSEAS International Conference on Applied Computer & Applied Computational Science, pp. 34–39 (2009)

    Google Scholar 

  57. Liu, Y.H., Cizeau, P., Meyer, M., Peng, C.K., Stanley, H.E.: Correlations in economic time series. Physica A 245, 437–440 (1997)

    Article  Google Scholar 

  58. Lockner, D.A., Johnston, M.J.S., Byerlee, J.D.: A mechanism to explain the generation of earthquake lights. Nature 302, 28–33 (1983)

    Article  Google Scholar 

  59. Mandelbrot, B.B., van Ness, J.W.: Fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Google Scholar 

  60. Mizutani, H., Ishido, T.: A new interpretation of magnetic field variation associated with Matsushiro earthquakes. J. Geomagn. Geoelectr. 28, 179–188 (1976)

    Article  Google Scholar 

  61. Mizutani, H., Ishido, T., Yokokura, T., Ohnishi, S.: Electrokinetic phenomena associated with earthquakes. Geophys. Res. Lett. 3, 365–368 (1976)

    Article  Google Scholar 

  62. Molchanov, O.A.: Fracturing as underlying mechanisms of seismo-electric signals. In: Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, ed. M. Hayakawa, pp. 349–356. TERRAPUB, Tokyo (1999)

    Google Scholar 

  63. Molchanov, O.A., Kopytenko, Y.A., Voronov, P.M., Kopytenko, E.A., Matiashvili, T.G., Fraser- Smith, A.C., Bernardi, A.: Results of ULF magnetic-field measurements near the epicenters of the Spitak (Ms = 6.9) and Loma Prieta (Ms = 7.1) earthquakes – comparative-analysis. Geophys. Res. Lett. 19, 1495–1498 (1992)

    Google Scholar 

  64. Morgan, D.: A model for the explanation of SES-generation based on electrokinetic effect, paper presented In the International Conference on Measurements and Theoretical Models of the Earth’s Field Variations Related to Earthquakes. Univ. Athens, Athens. (1990)

    Google Scholar 

  65. Morgan, F.D.: Electrodynamics of the earthquake source. EOS Trans. AGU F173 (1995)

    Google Scholar 

  66. Morgan, F.D., Nur, A.: Enhanced streaming potentials with two-phase flow (abstract). EOS Trans. AGU 67(44), 1203 (1986)

    Google Scholar 

  67. Morgan, F.D.,Williams, E.R., Madden, T.R.: Streaming potential properties of westerly granite with applications. J. Geophys. Res. 94, 12,449–12,461 (1989)

    Google Scholar 

  68. Morse, P., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1954)

    Google Scholar 

  69. Multhaupt, R.G., Gross, B., Sessler, G.M.: Recent Progress in Electret Research. In Electrets, ed. G. M. Sessler, 2nd edition. Springer-Verlag, Heidelberg (1987)

    Google Scholar 

  70. Nagahama, H., Teisseyre, R.: Thermodynamics of line defects and transient electric current: electromagnetic field generation in earthquake preparation zone. Acta Geophys. Pol. 46, 35–54 (1998)

    Google Scholar 

  71. Nagao, T., Orihara, Y., Yamaguchi, T., Takahashi, I., Hattori, K., Noda, Y., Sayanagi, K.,, Uyeda, S.: Coseismic geoelectric potential changes observed in Japan. Geophys. Res. Lett. 27, 1535–1538 (2000)

    Article  Google Scholar 

  72. Nagao, T., Uyeshima, M., Uyeda, S.: An independent check of VAN’s criteria for signal recognition. Geophys. Res. Lett. 23, 1441–1444 (1996)

    Article  Google Scholar 

  73. Nomicos, K., Chatzidiakos, P.: A telemetric system for measuring electrotelluric variations in Greece and its application to earthquake prediction. Tectonophysics 224, 39–46 (1993)

    Article  Google Scholar 

  74. Nomicos, K., Makris, J., Kefalas, M.: The telemetric system of VAN group In: Sir J. Lighthill (ed.) The Critical Review of VAN: Earthquake Prediction from Seismic Electric Signals, p. 77. World Scientific, Singapore (1996)

    Google Scholar 

  75. Ohnaka, M.: A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture. J. Geophys. Res. 108(B2), 2080 (2003)

    Google Scholar 

  76. Papathanassiou, A.N., Sakellis, I., Grammatikakis, J.: Negative activation volume for dielectric relaxation in hydrated rocks. Tectonophysics 490, 307–309 (2010)

    Article  Google Scholar 

  77. Park, S., Johnston, M., Madden, T., Morgan, D., Morrison, F.: Electromagnetic precursors to earthquakes in the VLF band: A review of observations and mechanisms. Rev. Geophys. 31, 117–132 (1993)

    Article  Google Scholar 

  78. Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Simons, M., Stanley, H.E.: Finite-size effects on long-range correlations: Implications for analyzing DNA sequences. Phys. Rev. E 47, 3730–3733 (1993)

    Article  Google Scholar 

  79. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685–1689 (1994)

    Article  Google Scholar 

  80. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. CHAOS 5, 82 (1995)

    Article  Google Scholar 

  81. Pride, S.R.: Governing equations for the coupled electromagnetics and acoustics of porous media. Phys. Rev. B. 50, 15,678–15,696 (1994)

    Google Scholar 

  82. Ram´ırez-Rojas, A., Flores-M´arquez, E. L., Guzm´an-Vargas, L., G´alvez-Coyt, G., Telesca, L., Angulo-Brown, F.: Statistical features of seismoelectric signals prior to M7.4 Guerrero-Oaxaca

    Google Scholar 

  83. earthquake (M´exico). Nat. Hazards and Earth Syst. Sci. 8, 1001–1007 (2008)

    Google Scholar 

  84. Ram´ırez-Rojas, A., Telesca, L., Angulo-Brown, F.: Entropy of geoelectrical time series in the natural time domain. Nat. Hazards and Earth Syst. Sci. 11, 219–225 (2011)

    Google Scholar 

  85. Reppert, P.M.: Electrokinetics in the Earth. MIT, Cambridge, Ph.D. Thesis (2000)

    Google Scholar 

  86. Reppert, P.M., Morgan, F.D.: Streaming potential collection and data processing techniques. J. Colloid Interface Sci. 233, 348–355 (2001)

    Article  Google Scholar 

  87. Reppert, P.M., Morgan, F.D., Lesmes, D., Jouniaux, L.: Frequency dependent streaming potentials. J. Colloid Interface Sci. 234, 194–203 (2001)

    Article  Google Scholar 

  88. Rokityansky, I.I.: Anomalous phenomena preceding earthquakes (one more approach to discussion on SES nature and VAN-prediction reliability). Phys. Chem. of the Earth (A) 24, 731–734 (1999)

    Google Scholar 

  89. Rundle, J.B., Turcotte, D.L., Klein,W.: (eds.) GeoComplexity and the Physics of Earthquakes. AGU, Washington, DC (2000)

    Google Scholar 

  90. Sarlis, N., Lazaridou, M., Kapiris, P., Varotsos, P.: Numerical model of the selectivity effect and ΔV/L criterion. Geophys. Res. Lett. 26, 3245–3248 (1999)

    Article  Google Scholar 

  91. Sarlis, N., Varotsos, P.: Comments on the transmission of electric signals in dielectric media. Acta Geophys. Pol. 49, 277–285 (2001)

    Google Scholar 

  92. Sarlis, N., Varotsos, P.: Magnetic field near the outcrop of an almost horizontal conductive sheet. J. Geodynamics 33, 463–476 (2002)

    Article  Google Scholar 

  93. Sarlis, N.V., Skordas, E.S., Lazaridou, M.S., Varotsos, P.A.: Investigation of seismicity after the initiation of a Seismic Electric Signal activity until the main shock. Proc. Japan Acad., Ser. B 84, 331–343 (2008)

    Google Scholar 

  94. Sata, N., Eberman, K., Eberl, K., Maier, J.: Mesoscopic fast ion conduction in nanometre-scale. Nature (London) 408, 946–949 (2000)

    Google Scholar 

  95. Scholz, C.H.: Earthquakes and friction laws. Nature (London) 391, 37–42 (1998)

    Google Scholar 

  96. Scholz, C.H.: Evidence for a strong San Andreas fault. Geology 28, 163–166 (2000)

    Article  Google Scholar 

  97. Scholz, C.H.: A fault in the ‘weak San Andreas’ theory. Nature 406, 234 (2000)

    Article  Google Scholar 

  98. Skordas, E., Kapiris, P., Bogris, N., Varotsos, P.: Field experimentation on the detectability of coseismic electric signals. Proc. Japan Acad., Ser. B 76, 51–56 (2000)

    Google Scholar 

  99. Slifkin, L.: Surface and dislocation effects on diffusion in ionic crystals, in Diffusion in Materials, eds. A.L. Laskar, J.L. Bocquet, G. Brebec and C. Monty, vol. 179, pp. 471–483. Kluwer, Dordrecht (1990)

    Google Scholar 

  100. Slifkin, L.: Seismic Electric Signals from displacement of charged dislocations. Tectonophysics 224, 149–152 (1993)

    Article  Google Scholar 

  101. Slifkin, L.: A dislocation model for Seismic Electric Signals. In: Sir J. Lighthill (ed.) The Critical Review of VAN: Earthquake Prediction from Seismic Electric Signals, pp. 97–104.World Scientific, Singapore (1996)

    Google Scholar 

  102. Sornette, A., Sornette, D.: Earthquake rupture as a critical point: Consequences for telluric precursor. Tectonophysics 179, 327–334 (1990)

    Article  Google Scholar 

  103. Sornette, D.: Earthquakes: from chemical alteration to mechanical rupture. Phys. Reports 313, 237– 292 (1999)

    Article  Google Scholar 

  104. Sornette, D.: Mechanochemistry: An hypothesis for shallow earthquakes. In: R. Teisseyre, J. Mazewski (eds.) Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, pp. 329–366. Academic Press, San Diego (2001)

    Chapter  Google Scholar 

  105. Sornette, D., Lagier, M., Roux, S., Hansen, A.: Critical piezoelectricity in percolation. J. Phys. France 50, 2201–2216 (1989)

    Article  Google Scholar 

  106. Stanley, H.E.: Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358–S366 (1999)

    Article  Google Scholar 

  107. Stanley, H.E., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Peng, C.K., Simon, M.: Scaling features of noncoding DNA. Physica A 273, 1–18 (1999)

    Article  Google Scholar 

  108. Stauffer, D.: Scaling theory of percolation clusters. Phys. Reports 54, 1–74 (1979)

    Article  Google Scholar 

  109. Surkov, V.V., Uyeda, S., Tanaka, H., Hayakawa, M.: Fractal properties of medium and seismoelectric phenomena. J. Geodynamics 33, 477–487 (2002)

    Article  Google Scholar 

  110. Talkner, P., Weber, R.O.: Power spectrum and detrended fluctuation analysis: Application to daily temperatures. Phys. Rev. E 62, 150–160 (2000)

    Article  Google Scholar 

  111. Taqqu, M.S., Teverovsky, V., Willinger, W.: Estimators for long-range dependence: An empirical study. Fractals 3, 785–798 (1995)

    Article  Google Scholar 

  112. Teisseyre, R.: Earthquake premonitory processes: Evolution of stresses and current generation. Terra Nova 4, 509–513 (1992)

    Article  Google Scholar 

  113. Teisseyre, R.: Electric field generation in earthquake premonitory processes. In: R. Teisseyre (ed.) Theory of Earthquake Premonitory and Fracture Processes, pp. 282–292. PWN, Warsaw (1995)

    Google Scholar 

  114. Teisseyre, R.: Motion and flow equation of stresses. Acta Geophys. Pol. 44, 19–29 (1996)

    Google Scholar 

  115. Teisseyre, R.: Dislocation-stress relations and evolution of dislocation fields. Acta Geophys. Pol. 45, 205–214 (1997)

    Google Scholar 

  116. Teisseyre, R.: Dislocation dynamics and related electromagnetic excitation. Acta Geophys. Pol. 49, 55–73 (2001)

    Google Scholar 

  117. Teisseyre, R., Nagahama, H.: Dislocation field evolution and dislocation source/sink function. Acta Geophys. Pol. 46, 13–33 (1998)

    Google Scholar 

  118. Turnhout, J.: Thermally Stimulated Discharge of Polymer Electrets. Elsevier, New York (1975)

    Google Scholar 

  119. Uyeda, S., Hayakawa, M., Nagao, T., Molchanov, O., Hattori, K., Orihara, Y., Gotoh, K., Akinaga, Y., Tanaka, H.: Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island region, Japan. Proc. Natl. Acad. Sci. USA 99, 7352–7355 (2002)

    Article  Google Scholar 

  120. Uyeda, S., Kamogawa, M., Tanaka, H.: Analysis of electrical activity and seismicity in the natural time domain for the volcanic-seismic swarm activity in 2000 in the Izu Island Region, Japan. J. Geophys. Res. 114, B02310 (2009)

    Article  Google Scholar 

  121. Vandewalle, N., Ausloos, M.: Crossing of two mobile averages: A method for measuring the roughness exponent. Phys. Rev. E 58, 6832–6834 (1998)

    Article  Google Scholar 

  122. Varotsos, P.: The dielectric loss of X-irradiated LiD+Mg+2. J. Phys. France 41, 377–379 (1980)

    Article  Google Scholar 

  123. Varotsos, P.: Earthquake prediction in Greece based on Seismic Electric Signals: Period January 1, 1984 to March 18, 1986. Bollettino di Geodesia e Scienze Affini XLV 2, 191–202 (1986)

    Google Scholar 

  124. Varotsos, P.: Fracture and friction: A review. Acta Geophys. Pol. 52, 105–142 (2004)

    Google Scholar 

  125. Varotsos, P.: The Physics of Seismic Electric Signals. TERRAPUB, Tokyo (2005)

    Google Scholar 

  126. Varotsos, P., Alexopoulos, K.: Calculation of the migration volume of vacancies in ionic solids from macroscopic parameters. Phys. Status Solidi A 47, K133–136 (1978)

    Article  Google Scholar 

  127. Varotsos, P., Alexopoulos, K.: Physical properties of the variations of the electric field of the Earth preceding earthquakes, I. Tectonophysics 110, 73–98 (1984)

    Article  Google Scholar 

  128. Varotsos, P., Alexopoulos, K.: Physical properties of the variations of the electric field of the Earth preceding earthquakes, II. Tectonophysics 110, 99–125 (1984)

    Article  Google Scholar 

  129. Varotsos, P., Alexopoulos, K.: Thermodynamics of Point Defects and their Relation with Bulk Properties. North Holland, Amsterdam (1986)

    Google Scholar 

  130. Varotsos, P., Alexopoulos, K.: Physical properties of the variations of the electric field of the Earth preceding earthquakes, III. Tectonophysics 136, 335–339 (1987)

    Article  Google Scholar 

  131. Varotsos, P., Alexopoulos, K., Lazaridou, M.: Latest aspects of earthquake prediction in Greece based on Seismic Electric Signals, II. Tectonophysics 224, 1–37 (1993)

    Article  Google Scholar 

  132. Varotsos, P., Alexopoulos, K., Nomicos, K.: Seven-hour precursors to earthqaukes determined from telluric currents. Practica of Athens Academy 56, 417–433 (1981)

    Google Scholar 

  133. Varotsos, P., Alexopoulos, K., Nomicos, K.: Comments on the pressure variation of the Gibbs energy for bound and unbound defects. Phys. Status Solidi B 111, 581–590 (1982)

    Article  Google Scholar 

  134. Varotsos, P., Bogris, N., Kyritsis, A.: Comments on the depolarization currents stimulated by variations of temperature and pressure. J. Phys. Chem. Solids 53, 1007–1011 (1992)

    Article  Google Scholar 

  135. Varotsos, P., Eftaxias, K., Lazaridou, M., Antonopoulos, G., Makris, J.: Recent VAN results on earthquake prediction in Greece (in Japanese). Zisin (Journal of the Seismological Society of Japan) 17, 18–26 (1994)

    Google Scholar 

  136. Varotsos, P., Eftaxias, K., Lazaridou, M., Antonopoulos, G., Makris, J., Poliyiannakis, J.: Summary of the five principles suggested by Varotsos et al. [1996] and the additional questions raised in this debate. Geophys. Res. Lett. 23, 1449–1452 (1996)

    Google Scholar 

  137. Varotsos, P., Eftaxias, K., Lazaridou, M., Bogris, N., Makris, J.: Note on the extension of the SES sensitive area at Ioannina station, Greece. Acta Geophys. Pol. 46, 55–60 (1998)

    Google Scholar 

  138. Varotsos, P., Eftaxias, K., Lazaridou, M., Nomicos, K., Sarlis, N., Bogris, N., Makris, J., Antonopoulos, G., Kopanas, J.: Recent earthquake prediction results in Greece based on the observation of Seismic Electric Signals. Acta Geophys. Pol. 44, 301–327 (1996)

    Google Scholar 

  139. Varotsos, P., Hadjicontis, V., A.S. Nowick, A.S.: The physical mechanism of Seismic Electric Signals. Acta Geophys. Pol. 49, 415–421 (2001)

    Google Scholar 

  140. Varotsos, P., Lazaridou, M.: Latest aspects of earthquake prediction in Greece based on Seismic Electric Signals. Tectonophysics 188, 321–347 (1991)

    Article  Google Scholar 

  141. Varotsos, P., Lazaridou, M., Eftaxias, K., Antonopoulos, G., Makris, J., Kopanas, J.: Short term earthquake prediction in Greece by Seismic Electric Signals. In: Sir J. Lighthill (ed.) The Critical Review of VAN: Earthquake Prediction from Seismic Electric Signals, pp. 29–76. World Scientific, Singapore (1996)

    Google Scholar 

  142. Varotsos, P., Mourikis, S.: Difference in conductivity between LiD and LiH crystals. Phys. Rev. B 10, 5220–5224 (1974)

    Article  Google Scholar 

  143. Varotsos, P., Sarlis, N., Bogris, N., Makris, J., Kapiris, P., Abdulla, A.: A comment on the ΔV/Lcriterion for the identification of seismic electric signals. In: Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, ed. M. Hayakawa, pp. 1–45. TERRAPUB, Tokyo (1999)

    Google Scholar 

  144. Varotsos, P., Sarlis, N., Lazaridou, M.: Transmission of stress induced electric signals in dielectric media. Part II. Acta Geophys. Pol. 48, 141–177 (2000)

    Google Scholar 

  145. Varotsos, P., Sarlis, N., Lazaridou, M., Kapiris, P.: A plausible model for the explanation of the selectivity effect of Seismic Electric Signals. Practica of Athens Academy 71, 283–354 (1996)

    Google Scholar 

  146. Varotsos, P., Sarlis, N., Lazaridou, M., Kapiris, P.: Transmission mechanism of Seismic Electric Signals, II. Practica of Athens Academy 72, 270–302 (1997)

    Google Scholar 

  147. Varotsos, P., Sarlis, N., Lazaridou, M., Kapiris, P.: Transmission of stress induced electric signals in dielectric media. J. Appl. Phys. 83, 60–70 (1998)

    Article  Google Scholar 

  148. Varotsos, P., Sarlis, N., Skordas, E.: Transmission of stress induced electric signals in dielectric media. Part III. Acta Geophys. Pol. 48, 263–297 (2000)

    Google Scholar 

  149. Varotsos, P., Sarlis, N., Skordas, E.: Magnetic field variations associated with SES. the instrumentation used for investigating their detectability. Proc. Jpn. Acad., Ser. B 77, 87–92 (2001)

    Google Scholar 

  150. Varotsos, P., Sarlis, N., Skordas, E.: Magnetic field variations associated with the SES before the 6.6 Grevena-Kozani earthquake. Proc. Jpn. Acad., Ser. B 77, 93–97 (2001)

    Google Scholar 

  151. Varotsos, P., Sarlis, N., Skordas, E.: A note on the spatial extent of the Volos SES sensitive site. Acta Geophys. Pol. 49, 425–435 (2001)

    Google Scholar 

  152. Varotsos, P., Sarlis, N., Skordas, E.: On the difference in the rise times of the two SES electric field components. Proc. Jpn. Acad., Ser. B 80, 276–282 (2004)

    Google Scholar 

  153. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: See (the freely available) EPAPS Document No. EPLEEE8- 68–116309 originally from P.A. Varotsos, N.V. Sarlis and E.S. Skordas, Phys. Rev. E 68, 031106 (2003). For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

  154. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Long-range correlations in the electric signals that precede rupture. Phys. Rev. E 66, 011902 (2002)

    Article  Google Scholar 

  155. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Attempt to distinguish electric signals of a dichotomous nature. Phys. Rev. E 68, 031106 (2003)

    Article  Google Scholar 

  156. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Long-range correlations in the electric signals that precede rupture: Further investigations. Phys. Rev. E 67, 021109 (2003)

    Article  Google Scholar 

  157. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Time-difference between the electric field components of signals prior to major earthquakes. Appl. Phys. Lett. 86, 194101 (2005)

    Article  Google Scholar 

  158. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Detrended fluctuation analysis of the magnetic and electric field variations that precede rupture. CHAOS 19, 023114 (2009)

    Article  Google Scholar 

  159. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Electric pulses some minutes before earthquake occurrences. Appl. Phys. Lett. 90, 064104 (2007)

    Article  Google Scholar 

  160. Varotsos, P.A., Sarlis, N.V., Lazaridou, M.S.: Interconnection of defect parameters and stressinduced electric signals in ionic crystals. Phys. Rev. B 59, 24–27 (1999)

    Article  Google Scholar 

  161. Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Electric fields that “arrive” before the time derivative of the magnetic field prior to major earthquakes. Phys. Rev. Lett. 91, 148501 (2003)

    Article  Google Scholar 

  162. Vicsek, T.: Fractal growth phenomena. World Scientific, Singapore (1989)

    Google Scholar 

  163. Weron, A., Burnecki, K., Mercik, S., Weron, K.: Complete description of all self-similar models driven by L´evy stable noise. Phys. Rev. E 71, 016113 (2005)

    Article  Google Scholar 

  164. Yoshii, H.: Social impacts of earthquake prediction in Greece. Tectonophysics 224, 251–255 (1993)

    Article  Google Scholar 

  165. Zhdanov, M.S., Keller, G.V.: The Geoelectrical Methods in Geophysical Exploration. Elsevier, Amsterdam (1994)

    Google Scholar 

  166. Zoback, M.D.: Strength of the San Andreas. Nature 405, 31–32 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varotsos, P.A., Sarlis, N.V., Skordas, E.S. (2011). Introduction to Seismic Electric Signals. In: Natural Time Analysis: The New View of Time. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16449-1_1

Download citation

Publish with us

Policies and ethics