Skip to main content

Shell Mathematical Models

  • Chapter
  • First Online:
Book cover The Finite Element Analysis of Shells - Fundamentals

Part of the book series: Computational Fluid and Solid Mechanics ((COMPFLUID))

Abstract

In this chapter we describe and analyse the linear shell models that we consider in this book. We first describe the fundamental shell kinematics used. Then we discuss the “basic shell model” which is implicitly employed in general finite element solutions and from which other classical shell and plate models can be derived. We summarize the shell models that we call the “shear-membrane-bending model” and the “membrane-bending model”, and introduce the proper mathematical framework in which they define well-posed problems. As special cases of these shell models we obtain well-known plate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Ciarlet, P.G. (2000). Mathematical Elasticity - Volume III: Theory of Shells. Amsterdam: North-Holland.

    Google Scholar 

  • Kim, D.N., & Bathe, K.J. (2008). A 4-node 3D-shell element to model shell surface tractions and incompressible behavior. Comput. & Structures, 86(21-22), 2027-2041.

    Article  Google Scholar 

  • Reissner, E. (1945). The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech., 67, A69-A77.

    MathSciNet  Google Scholar 

  • Bathe, K.J., & Wilson, E.L. (1974). Thick shells. In W. Pilkey, K. Saczalski, & H. Schaeér (Eds.) Structural Mechanics Computer Programs.

    Google Scholar 

  • Sansour, C. (1995). A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech., 65, 194-216.

    Article  MATH  Google Scholar 

  • Flügge, W. (1973). Stresses in Shells. New York, Heidelberg: Springer-Verlag, 2nd ed.

    MATH  Google Scholar 

  • Coutris, N. (1978). Théorème d’existence et d’unicité pour un problème de coque élastique dans le cas d’un modèle linéaire de P.M. Naghdi. R.A.I.R.O. Anal. Numér., 12, 51-57.

    MATH  MathSciNet  Google Scholar 

  • Green, A.E., & Zerna, W. (1968). Theoretical Elasticity. Oxford: Clarendon Press, 2nd ed.

    MATH  Google Scholar 

  • Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of Plates and Shells. New York: McGraw-Hill.

    Google Scholar 

  • Mindlin, R.D. (1951). Inuence of rotary inertia and shear on exural motion of isotropic elastic plates. J. Appl. Mech., 18, 31-38.

    MATH  Google Scholar 

  • Reissner, E. (1952). Stress strain relations in the theory of thin elastic shells. J. Math. Phys., 31, 109-119.

    MATH  MathSciNet  Google Scholar 

  • Ciarlet, P.G. (1988). Mathematical Elasticity - Volume I: Three-Dimensional Elasticity. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Blouza, A., & Le Dret, H. (1999). Existence and uniqueness for the linear Koiter model for shells with little regularity. Quart. Appl. Math., 57, 317-337.

    MATH  MathSciNet  Google Scholar 

  • Valid, R. (1995). The Nonlinear Theory of Shells through Variational Principles. Chichester: John Wiley & Sons.

    MATH  Google Scholar 

  • Bathe, K.J. (1996). Finite Element Procedures. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Bernadou, M., & Ciarlet, P.G. (1975). Sur l’ellipticité du modéle linéaire de coques de W.T. Koiter. In R. Glowinski, & J. Lions (Eds.) Computing Methods in Applied Sciences and Engineering. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Delfour, M.C. (2000). Tangential diérential calculus and functional analysis on a C1,1 submanifold. In R. Gulliver, W. Littman, & R. Triggiani (Eds.) Diérential-Geometric Methods in the Control of Partial Differential Equations, (pp. 83-115). Providence: AMS.

    Google Scholar 

  • Calladine, C.R. (1983). Theory of Shell Structures. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Wunderlich, W. (1980). On a consistent shell theory in mixed tensor formulation. In Proc. 3rd IUTAM Symposium on Shell Theory: Theory of Shells. Amsterdam: North Holland.

    Google Scholar 

  • Bathe, K.J., Sussman, T., & Walczak, J. (201x). Crash and crush shell analyses with implicit integration. In preparation.

    Google Scholar 

  • Love, A.E.H. (1927). Mathematical Theory of Elasticity. 4th ed.

    Google Scholar 

  • Alessandrini, S.M., Arnold, D.N., Falk, R.S., & Madureira, A. L. (1999). Derivation and justification of plate models by variational methods. In Plates and shells (Québec, QC, 1996), vol. 21 of CRM Proc. Lecture Notes, (pp. 1-20). Providence: Amer. Math. Soc.

    Google Scholar 

  • Novozhilov, V.V. (1970). Thin Shell Theory. Groningen: Wolters-Noordhoff Publishing, 2nd ed.

    Google Scholar 

  • Naghdi, P.M. (1963). Foundations of elastic shell theory. In Progress in Solid Mechanics, vol. 4, (pp. 1-90). Amsterdam: North-Holland.

    Google Scholar 

  • Koiter, W.T. (1965). On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wetensch., B69, 1-54.

    MathSciNet  Google Scholar 

  • Chapelle, D., & Ferent, A. (2003). Modeling of the inclusion of a reinforcing sheet within a 3D medium. Math. Models Methods Appl. Sci., 13, 573-595.

    Article  MATH  MathSciNet  Google Scholar 

  • Delfour, M.C. (1999). Intrinsic P(2,1) thin shell model and Naghdi’s models without a priori assumption on the stress tensor. In K. Hoffmann, G. Leugering, & F. Tröltzsch (Eds.) Optimal Control of Partial Diérential Equations, (pp. 99-113). Basel: Birkhäuser.

    Google Scholar 

  • Hencky, H. (1947). Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Ingenieur Archiv, 16, 72-76.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapelle, D., Bathe, KJ. (2011). Shell Mathematical Models. In: The Finite Element Analysis of Shells - Fundamentals. Computational Fluid and Solid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16408-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16408-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16407-1

  • Online ISBN: 978-3-642-16408-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics