Skip to main content

Hepatocellular Carcinoma Biology

  • Chapter
  • First Online:
Multidisciplinary Treatment of Hepatocellular Carcinoma

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 190))

Abstract

Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy. Its incidence and prevalence is globally heterogeneous with the highest rates in Southeast Asia and Sub-Saharan Africa. In Western Industry nations, its incidence has significantly increased throughout the previous three decades. Its global heterogeneity is in part a reflection of the global distribution of its risk factors. Its prognosis is dismal with a 5-year survival of 11 %. The only potentially curative treatment is surgical with either resection or orthotopic liver transplantation. However, the majority of HCC patients are diagnosed at an advanced stage at which surgical therapies are not feasible. HCC is considered chemotherapy-resistant—a characteristic thought to be mediated in part through stem-like tumor initiating cells (STICs). Recent studies have provided significant insights in the hepatocarcinogenesis and the molecular signaling pathways of this malignancy resulting in the development of novel, molecular targeted therapies with modest therapeutic benefit. Our growing understanding of the biology of this malignancy will help in the development of novel, molecular-targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 229.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nordenstedt H, White DL, El-Serag HB (2010) The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis 42(3):S206–S214

    Article  PubMed  Google Scholar 

  2. Everhart JE, Ruhl CE (2009) Burden of digestive diseases in the United States Part III: liver, biliary tract, and pancreas. Gastroenterology 136:1134–44

    Article  PubMed  Google Scholar 

  3. Roskams T (2006) Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 25:3818–22

    Article  PubMed  CAS  Google Scholar 

  4. Kuwahara R, Kofman AV, Landis CS, Swenson ES, Barendswaard E, Theise ND (2008) The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology 47:1994–2002

    Article  PubMed  Google Scholar 

  5. Tang Y, Kitisin K, Jogunoori W, Li C, Deng CX, Mueller SC, Ressom HW, Rashid A, He AR, Mendelson JS, Jessup JM, Shetty K, Zasloff M, Mishra B, Reddy EP, Johnson L, Mishra L (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A 105:2445–50

    Article  PubMed  CAS  Google Scholar 

  6. Strick-Marchand H, Morosan S, Charneau P, Kremsdorf D, Weiss MC (2004) Bipotential mouse embryonic liver stem cell lines contribute to liver regeneration and differentiate as bile ducts and hepatocytes. Proc Natl Acad Sci U S A 101:8360–65

    Article  PubMed  CAS  Google Scholar 

  7. Furuyama K, Kawaguchi Y et al. (2011) Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 43:34–41

    Google Scholar 

  8. Shin S, Walton G, Aoki R, Brondell K, Schug J, Fox A, Smirnova O, Dorrell C, Erker L, Chu AS, Wells RG, Grompe M, Greenbaum LE, Kaestner KH (2011) Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev 25:1185–92

    Article  PubMed  CAS  Google Scholar 

  9. Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E, Reid LM, Minato H, Honda M, Kaneko S, Tang ZY, Wang XW (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136:1012–24

    Article  PubMed  CAS  Google Scholar 

  10. Lee JS, Heo J et al. (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med, 12:410–16

    Google Scholar 

  11. Marquardt JU, Raggi C et al. (2011) Human hepatic cancer stem cells are characterized by common stemness traits and diverse oncogenic pathways. Hepatology, 54: 1031–1042

    Google Scholar 

  12. Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, Deng C, Wauthier E, Reid LM, Ye QH, Qin LX, Yang W, Wang HY, Tang ZY, Croce CM, Wang XW (2009) Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50:472–80

    Article  PubMed  CAS  Google Scholar 

  13. Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, Zhang SH, Huang DD, Tang L, Kong XN, Chen C, Liu SQ, Wu MC, Wang HY (2008) Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 68:4287–95

    Article  PubMed  CAS  Google Scholar 

  14. Yamashita T, Budhu A, Forgues M, Wang XW (2007) Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res 67:10831–839

    Article  PubMed  CAS  Google Scholar 

  15. Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG (2001) Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 34:101–108

    Article  PubMed  CAS  Google Scholar 

  16. Hritz I, Mandrekar P, Velayudham A, Catalano D, Dolganiuc A, Kodys K, Kurt-Jones E, Szabo G (2008) The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 48:1224–31

    Article  PubMed  CAS  Google Scholar 

  17. Vaquero J, Campbell JS, Haque J, McMahon RS, Riehle KJ, Bauer RL, Fausto N (2011) Toll-like receptor 4 and myeloid differentiation factor 88 provide mechanistic insights into the cause and effects of interleukin-6 activation in mouse liver regeneration. Hepatology 54:597–608

    Article  PubMed  CAS  Google Scholar 

  18. Yu LX, Yan HX, Liu Q, Yang W, Wu HP, Dong W, Tang L, Lin Y, He YQ, Zou SS, Wang C, Zhang HL, Cao GW, Wu MC, Wang HY (2010) Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52:1322–33

    Article  PubMed  CAS  Google Scholar 

  19. Block TM, Mehta AS, Fimmel CJ, Jordan R (2003) Molecular viral oncology of hepatocellular carcinoma. Oncogene 22:5093–107

    Article  PubMed  CAS  Google Scholar 

  20. Gozuacik D, Murakami Y, Saigo K, Chami M, Mugnier C, Lagorce D, Okanoue T, Urashima T, Brechot C, Paterlini-Brechot P (2001) Identification of human cancer-related genes by naturally occurring Hepatitis B Virus DNA tagging. Oncogene 20:6233–40

    Article  PubMed  CAS  Google Scholar 

  21. Chisari FV, Filippi P, Buras J, McLachlan A, Popper H, Pinkert CA, Palmiter RD, Brinster RL (1987) Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proc Natl Acad Sci U S A 84:6909–13

    Article  PubMed  CAS  Google Scholar 

  22. Hussain SP, Schwank J, Staib F, Wang XW, Harris CC (2007) TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26:2166–76

    Article  PubMed  CAS  Google Scholar 

  23. Liu J, Ding X, Tang J, Cao Y, Hu P, Zhou F, Shan X, Cai X, Chen Q, Ling N, Zhang B, Bi Y, Chen K, Ren H, Huang A, He TC, Tang N (2011) Enhancement of canonical Wnt/beta-Catenin signaling activity by HCV core protein promotes cell growth of hepatocellular carcinoma cells. PLoS ONE 6:e27496

    Article  PubMed  CAS  Google Scholar 

  24. Machida K, Tsukamoto H, Liu JC, Han YP, Govindarajan S, Lai MM, Akira S, Ou JH (2010) c-Jun mediates hepatitis C virus hepatocarcinogenesis through signal transducer and activator of transcription 3 and nitric oxide-dependent impairment of oxidative DNA repair. Hepatology 52:480–92

    Article  PubMed  CAS  Google Scholar 

  25. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–44

    Article  PubMed  CAS  Google Scholar 

  26. Wei Y, Liu F, Li B, Chen X, Ma Y, Yan L, Wen T, Xu M, Wang W, Yang J (2011) Polymorphisms of tumor necrosis factor-alpha and hepatocellular carcinoma risk: a HuGE systematic review and meta-analysis. Dig Dis Sci 56:2227–36

    Article  PubMed  CAS  Google Scholar 

  27. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379–83

    Article  PubMed  CAS  Google Scholar 

  28. Li W, Liang X, Leu JI, Kovalovich K, Ciliberto G, Taub R (2001) Global changes in interleukin-6-dependent gene expression patterns in mouse livers after partial hepatectomy. Hepatology 33:1377–86

    Article  PubMed  CAS  Google Scholar 

  29. Jin X, Zimmers TA, Perez EA, Pierce RH, Zhang Z, Koniaris LG (2006) Paradoxical effects of short- and long-term interleukin-6 exposure on liver injury and repair. Hepatology 43:474–84

    Article  PubMed  CAS  Google Scholar 

  30. Zhang W, Yue B, Wang GQ, Lu SL (2002) Serum and ascites levels of macrophage migration inhibitory factor, TNF-alpha and IL-6 in patients with chronic virus hepatitis B and hepatitis cirrhosis. Hepatobiliary Pancreat Dis Int 1:577–80

    PubMed  CAS  Google Scholar 

  31. Cheon YK, Cho YD, Moon JH, Jang JY, Kim YS, Lee MS, Lee JS, Shim CS (2007) Diagnostic utility of interleukin-6 (IL-6) for primary bile duct cancer and changes in serum IL-6 levels following photodynamic therapy. Am J Gastroenterol 102:2164–70

    Article  PubMed  CAS  Google Scholar 

  32. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:121–124

    Article  PubMed  CAS  Google Scholar 

  33. He G, Karin M (2011) NF-kappaB and STAT3–key players in liver inflammation and cancer. Cell Res 21:159–68

    Article  PubMed  CAS  Google Scholar 

  34. O’Neil BH, Buzkova P, Farrah H, Kashatus D, Sanoff H, Goldberg RM, Baldwin AS, Funkhouser WK (2007) Expression of nuclear factor-kappaB family proteins in hepatocellular carcinomas. Oncology 72:97–104

    Article  PubMed  Google Scholar 

  35. Lin L, Amin R, Gallicano GI, Glasgow E, Jogunoori W, Jessup JM, Zasloff M, Marshall JL, Shetty K, Johnson L, Mishra L, He AR (2009) The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-beta signaling. Oncogene 28:961–72

    Article  PubMed  CAS  Google Scholar 

  36. He G, Yu GY, Temkin V, Ogata H, Kuntzen C, Sakurai T, Sieghart W, Peck-Radosavljevic M, Leffert HL, Karin M (2010) Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17:286–97

    Article  PubMed  CAS  Google Scholar 

  37. Choudhari SR, Khan MA, Harris G, Picker D, Jacob GS, Block T, Shailubhai K (2007) Deactivation of Akt and STAT3 signaling promotes apoptosis, inhibits proliferation, and enhances the sensitivity of hepatocellular carcinoma cells to an anticancer agent, Atiprimod. Mol Cancer Ther 6:112–21

    Article  PubMed  CAS  Google Scholar 

  38. Liu Y, Li PK, Li C, Lin J (2010) Inhibition of STAT3 signaling blocks the anti-apoptotic activity of IL-6 in human liver cancer cells. J Biol Chem 285:27429–39

    Article  PubMed  CAS  Google Scholar 

  39. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–66

    Article  PubMed  CAS  Google Scholar 

  40. Sakurai T, Maeda S, Chang L, Karin M (2006) Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci U S A 103:10544–51

    Article  PubMed  CAS  Google Scholar 

  41. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    Article  PubMed  CAS  Google Scholar 

  42. Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, Harris CC, Herman JG (2001) SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 28:29–35

    PubMed  CAS  Google Scholar 

  43. Kuo ML, Chuang SE, Lin MT, Yang SY (2001) The involvement of PI 3-K/Akt-dependent up-regulation of Mcl-1 in the prevention of apoptosis of Hep3B cells by interleukin-6. Oncogene 20:677–85

    Article  PubMed  CAS  Google Scholar 

  44. Lee G, Piquette-Miller M (2001) Influence of IL-6 on MDR and MRP-mediated multidrug resistance in human hepatoma cells. Can J Physiol Pharmacol 79:876–84

    Article  PubMed  CAS  Google Scholar 

  45. Chen RH, Ebner R, Derynck R (1993) Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-beta activities. Science 260:1335–8

    Article  PubMed  CAS  Google Scholar 

  46. Feng XH, Derynck R (1997) A kinase subdomain of transforming growth factor-beta (TGF-beta) type I receptor determines the TGF-beta intracellular signaling specificity. EMBO J 16:3912–23

    Article  PubMed  CAS  Google Scholar 

  47. Kimchi A, Wang XF, Weinberg RA, Cheifetz S, Massague J (1988) Absence of TGF-beta receptors and growth inhibitory responses in retinoblastoma cells. Science 240:196–99

    Article  PubMed  CAS  Google Scholar 

  48. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–84

    Article  PubMed  CAS  Google Scholar 

  49. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  50. Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M (2010) Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology 52:966–74

    Article  PubMed  CAS  Google Scholar 

  51. Mishra L, Shetty K, Tang Y, Stuart A, Byers SW (2005) The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 24:5775–89

    Article  PubMed  CAS  Google Scholar 

  52. Li Y, Cao H, Jiao Z, Pakala SB, Sirigiri DN, Li W, Kumar R, Mishra L (2010) Carcinoembryonic antigen interacts with TGF-{beta} receptor and inhibits TGF-{beta} signaling in colorectal cancers. Cancer Res 70:8159–68

    Article  PubMed  CAS  Google Scholar 

  53. Ito N, Kawata S, Tamura S, Takaishi K, Shirai Y, Kiso S, Yabuuchi I, Matsuda Y, Nishioka M, Tarui S (1991) Elevated levels of transforming growth factor beta messenger RNA and its polypeptide in human hepatocellular carcinoma. Cancer Res 51:4080–83

    PubMed  CAS  Google Scholar 

  54. Shirai Y, Kawata S, Tamura S, Ito N, Tsushima H, Takaishi K, Kiso S, Matsuzawa Y (1994) Plasma transforming growth factor-beta 1 in patients with hepatocellular carcinoma: comparison with chronic liver diseases. Cancer 73:2275–79

    Article  PubMed  CAS  Google Scholar 

  55. Whittaker S, Marais R, Zhu AX (2010) The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29:4989–5005

    Article  PubMed  CAS  Google Scholar 

  56. Wong CM, Fan ST, Ng IO (2001) beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 92:136–45

    Article  PubMed  CAS  Google Scholar 

  57. Nejak-Bowen KN, Monga SP (2011) Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin Cancer Biol 21:44–58

    Article  PubMed  CAS  Google Scholar 

  58. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, Villanueva A, Newell P, Ikeda K, Hashimoto M, Watanabe G, Gabriel S, Friedman SL, Kumada H, Llovet JM, Golub TR (2009) Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69:7385–92

    Article  PubMed  CAS  Google Scholar 

  59. Schmidt VA, Chiariello CS, Capilla E, Miller F, Bahou WF (2008) Development of hepatocellular carcinoma in Iqgap2-deficient mice is IQGAP1 dependent. Mol Cell Biol 28:1489–502

    Article  PubMed  CAS  Google Scholar 

  60. Zhu AX, Duda DG, Sahani DV, Jain RK (2011) HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol 8:292–301

    Article  PubMed  CAS  Google Scholar 

  61. El-Assal ON, Yamanoi A, Soda Y, Yamaguchi M, Igarashi M, Yamamoto A, Nabika T, Nagasue N (1998) Clinical significance of microvessel density and vascular endothelial growth factor expression in hepatocellular carcinoma and surrounding liver: possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver. Hepatology 27:1554–62

    Article  PubMed  CAS  Google Scholar 

  62. Mas VR, Maluf DG, Archer KJ, Yanek KC, Fisher RA (2007) Angiogenesis soluble factors as hepatocellular carcinoma noninvasive markers for monitoring hepatitis C virus cirrhotic patients awaiting liver transplantation. Transplantation 84:1262–71

    Article  PubMed  Google Scholar 

  63. Park YN, Kim YB, Yang KM, Park C (2000) Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med 124:1061–65

    PubMed  CAS  Google Scholar 

  64. Chao Y, Li CP, Chau GY, Chen CP, King KL, Lui WY, Yen SH, Chang FY, Chan WK, Lee SD (2003) Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol 10:355–62

    Article  PubMed  Google Scholar 

  65. Poon RT, Ho JW, Tong CS, Lau C, Ng IO, Fan ST (2004) Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma. Br J Surg 91:1354–60

    Article  PubMed  CAS  Google Scholar 

  66. Tamesa T, Iizuka N, Mori N, Okada T, Takemoto N, Tangoku A, Oka M (2009) High serum levels of vascular endothelial growth factor after hepatectomy are associated with poor prognosis in hepatocellular carcinoma. Hepatogastroenterology 56:1122–26

    PubMed  CAS  Google Scholar 

  67. Breuhahn K, Vreden S, Haddad R, Beckebaum S, Stippel D, Flemming P, Nussbaum T, Caselmann WH, Haab BB, Schirmacher P (2004) Molecular profiling of human hepatocellular carcinoma defines mutually exclusive interferon regulation and insulin-like growth factor II overexpression. Cancer Res 64:6058–64

    Article  PubMed  CAS  Google Scholar 

  68. Cariani E, Lasserre C, Seurin D, Hamelin B, Kemeny F, Franco D, Czech MP, Ullrich A, Brechot C (1988) Differential expression of insulin-like growth factor II mRNA in human primary liver cancers, benign liver tumors, and liver cirrhosis. Cancer Res 48:6844–49

    PubMed  CAS  Google Scholar 

  69. Ng IO, Lee JM, Srivastava G, Ng M (1998) Expression of insulin-like growth factor II mRNA in hepatocellular carcinoma. J Gastroenterol Hepatol 13:152–7

    Article  PubMed  CAS  Google Scholar 

  70. Hayashi J, Aoki H, Arakawa Y, Hino O (1999) Hepatitis C virus and hepatocarcinogenesis. Intervirology 42:205–10

    Article  PubMed  CAS  Google Scholar 

  71. Lee YI, Lee S, Das GC, Park US, Park SM (2000) Activation of the insulin-like growth factor II transcription by aflatoxin B1 induced p53 mutant 249 is caused by activation of transcription complexes; implications for a gain-of-function during the formation of hepatocellular carcinoma. Oncogene 19:3717–26

    Article  PubMed  CAS  Google Scholar 

  72. Lee YI, Lee S, Lee Y, Bong YS, Hyun SW, Yoo YD, Kim SJ, Kim YW, Poo HR (1998) The human hepatitis B virus transactivator X gene product regulates Sp1 mediated transcription of an insulin-like growth factor II promoter 4. Oncogene 16:2367–80

    Article  PubMed  CAS  Google Scholar 

  73. Su Q, Liu YF, Zhang JF, Zhang SX, Li DF, Yang JJ (1994) Expression of insulin-like growth factor II in hepatitis B, cirrhosis and hepatocellular carcinoma: its relationship with hepatitis B virus antigen expression. Hepatology 20:788–99

    Article  PubMed  CAS  Google Scholar 

  74. Rogler CE, Yang D, Rossetti L, Donohoe J, Alt E, Chang CJ, Rosenfeld R, Neely K, Hintz R (1994) Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J Biol Chem 269:13779–84

    PubMed  CAS  Google Scholar 

  75. Uchida K, Kondo M, Takeda S, Osada H, Takahashi T, Nakao A (1997) Altered transcriptional regulation of the insulin-like growth factor 2 gene in human hepatocellular carcinoma. Mol Carcinog 18:193–8

    Article  PubMed  CAS  Google Scholar 

  76. Takeda S, Kondo M, Kumada T, Koshikawa T, Ueda R, Nishio M, Osada H, Suzuki H, Nagatake M, Washimi O, Takagi K, Takahashi T, Nakao A (1996) Allelic-expression imbalance of the insulin-like growth factor 2 gene in hepatocellular carcinoma and underlying disease. Oncogene 12:1589–92

    PubMed  CAS  Google Scholar 

  77. Desbois-Mouthon C, Baron A (2009) Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin-like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma. Clin Cancer Res 15:5445–56

    Article  PubMed  CAS  Google Scholar 

  78. Hopfner M, Huether A, Sutter AP, Baradari V, Schuppan D, Scherubl H (2006) Blockade of IGF-1 receptor tyrosine kinase has antineoplastic effects in hepatocellular carcinoma cells. Biochem Pharmacol 71:1435–48

    Article  PubMed  Google Scholar 

  79. Kim SO, Park JG, Lee YI (1996) Increased expression of the insulin-like growth factor I (IGF-I) receptor gene in hepatocellular carcinoma cell lines: implications of IGF-I receptor gene activation by hepatitis B virus X gene product. Cancer Res 56:3831–6

    PubMed  CAS  Google Scholar 

  80. Alexia C, Bras M, Fallot G, Vadrot N, Daniel F, Lasfer M, Tamouza H, Groyer A (2006) Pleiotropic effects of PI-3’ kinase/Akt signaling in human hepatoma cell proliferation and drug-induced apoptosis. Ann N Y Acad Sci 1090:1–17

    Article  PubMed  CAS  Google Scholar 

  81. Nussbaum T, Samarin J, Ehemann V, Bissinger M, Ryschich E, Khamidjanov A, Yu X, Gretz N, Schirmacher P, Breuhahn K (2008) Autocrine insulin-like growth factor-II stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis. Hepatology 48:146–56

    Article  PubMed  CAS  Google Scholar 

  82. Desbois-Mouthon C, Cacheux W (2006) Blivet-Van Eggelpoel MJ, Barbu V, Fartoux L, Poupon R, Housset C, Rosmorduc O. Impact of IGF-1R/EGFR cross-talks on hepatoma cell sensitivity to gefitinib. Int J Cancer 119:2557–66

    Article  PubMed  CAS  Google Scholar 

  83. Tovar V, Alsinet C, Villanueva A, Hoshida Y, Chiang DY, Sole M, Thung S, Moyano S, Toffanin S, Minguez B, Cabellos L, Peix J, Schwartz M, Mazzaferro V, Bruix J, Llovet JM (2010) IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol 52:550–9

    Article  PubMed  CAS  Google Scholar 

  84. Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS (2004) Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A 101:4477–82

    Article  PubMed  CAS  Google Scholar 

  85. Pediaditakis P, Lopez-Talavera JC, Petersen B, Monga SP, Michalopoulos GK (2001) The processing and utilization of hepatocyte growth factor/scatter factor following partial hepatectomy in the rat. Hepatology 34:688–93

    Article  PubMed  CAS  Google Scholar 

  86. Ma PC, Maulik G, Christensen J, Salgia R (2003) c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 22:309–25

    Article  PubMed  CAS  Google Scholar 

  87. Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini PM, Prat M, Di Nardo P (2006) Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 24:23–33

    Article  PubMed  CAS  Google Scholar 

  88. Boix L, Rosa JL, Ventura F, Castells A, Bruix J, Rodes J, Bartrons R (1994) c-met mRNA overexpression in human hepatocellular carcinoma. Hepatology 19:88–91

    Article  PubMed  CAS  Google Scholar 

  89. Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu MY, Xu Y, Song ZJ, Wang ZJ, Wu JC, Bai DS, Li JC, Liu KD, Fan J (2009) Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology 49:491–503

    Article  PubMed  CAS  Google Scholar 

  90. You H, Ding W et al. (2011) c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology 54: 879–889

    Google Scholar 

  91. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–84

    Article  PubMed  CAS  Google Scholar 

  92. Giambartolomei S, Covone F, Levrero M, Balsano C (2001) Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein. Oncogene 20:2606–10

    Article  PubMed  CAS  Google Scholar 

  93. Hwang YH, Choi JY, Kim S, Chung ES, Kim T, Koh SS, Lee B, Bae SH, Kim J, Park YM (2004) Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res 29:113–121

    Article  PubMed  CAS  Google Scholar 

  94. Huynh H, Nguyen TT, Chow KH, Tan PH, Soo KC, Tran E (2003) Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroenterol 3:19

    Article  PubMed  Google Scholar 

  95. Tian Y, Hu Y, Wang Z, Chen K, Zhang L, Wang L, Ren M, Huang A, Tang H (2011) virus regulates Raf1 expression in HepG2.2.15 cells by enhancing its promoter activity. Arch Virol 156:869–74

    Article  PubMed  CAS  Google Scholar 

  96. Tannapfel A, Sommerer F, Benicke M, Katalinic A, Uhlmann D, Witzigmann H, Hauss J, Wittekind C (2003) Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 52:706–12

    Article  PubMed  CAS  Google Scholar 

  97. Sahin F, Kannangai R, Adegbola O, Wang J, Su G, Torbenson M (2004) mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res 10:8421–5

    Article  PubMed  CAS  Google Scholar 

  98. Hu TH, Huang CC, Lin PR, Chang HW, Ger LP, Lin YW, Changchien CS, Lee CM, Tai MH (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97:1929–40

    Article  PubMed  CAS  Google Scholar 

  99. Nakanishi K, Sakamoto M, Yamasaki S, Todo S, Hirohashi S (2005) Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer 103:307–12

    Article  PubMed  CAS  Google Scholar 

  100. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, Naito M, Enomoto K, Watanabe S, Mak TW, Nakano T (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–83

    PubMed  CAS  Google Scholar 

  101. Treiber G (2009) mTOR inhibitors for hepatocellular cancer: a forward-moving target. Expert Rev Anticancer Ther 9:247–61

    Article  PubMed  CAS  Google Scholar 

  102. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Blechacz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blechacz, B., Mishra, L. (2013). Hepatocellular Carcinoma Biology. In: Vauthey, JN., Brouquet, A. (eds) Multidisciplinary Treatment of Hepatocellular Carcinoma. Recent Results in Cancer Research, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16037-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16037-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16036-3

  • Online ISBN: 978-3-642-16037-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics