Skip to main content

Solutions to Exercises

  • Chapter
  • First Online:
Wave Turbulence

Part of the book series: Lecture Notes in Physics ((LNP,volume 825))

  • 2673 Accesses

Abstract

In this Chapter, solutions for the exercises of Part II are given, and an abstract with the interaction coefficient for the gravity water waves is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zakharov, V.E., Piterbarg, L.I.: Sov. Phys. Dokl. 32, 560 (1987)

    ADS  MATH  Google Scholar 

  2. Krasitskii, V.P.: On the canonical transformation of the theory of weakly nonlinear waves with nondecay dispersion law. Sov. Phys. JETP 98, 1644–1655 (1990)

    Google Scholar 

  3. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence. Series in Nonlinear Dynamics. Springer (1992)

    Google Scholar 

  4. Zakharov, V.E.: Statistical theory of surface waves on fluid of finite depth. Eur. J. Mech. B/Fluids 18, 327–344 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Dyachenko, A.I., Lvov, Y.V., Zakharov, V.E.: Five-wave interaction on the surface of deep fluid. Phys. D, 87, 233 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Nazarenko .

Appendix: Interaction Coefficient for the Deep Water Surface Waves

Appendix: Interaction Coefficient for the Deep Water Surface Waves

Dispersion relation for the deep water surface waves, \(\omega = \sqrt{g k}\), does not allow three-wave resonances. Thus the leading process is four-wave, and by a quasi-identity canonical transformation the cubic interaction Hamiltonian (corresponding to quadratic nonlinear terms in the dynamical equation) can be removed from to the description, which transforms the Hamiltonian to the form (6.71). This task appears to be quite cumbersome, and the correct canonical transformation and the resulting Hamiltonian was obtained only in 1990 (24 years after finding the Zakharov-Filonenko spectrum for the gravity WT!) by Krasitskii [2]. Krasitskii’s derivation is quite complicated, and a more efficient procedure was described in ZLF book [3] in Appendix 3 for general four-wave systems. This method uses a trick of finding the canonical transformation as a infinitesimal-time evolution operator with an auxiliary Hamiltonian. Interested reader should read this place in ZLF, as it gives a very clear and detailed explanation of the method. The only remark we add here is that the resulting expression (A3.7) in ZLF can be significantly simplified by removing the non-resonant part (the second and the third lines in (A3.7)) by an appropriate choice of function \(\tilde{W}\).

The most compact and, therefore, practically useful expression for the interaction coefficient for the deep water surface waves was obtained by Zakharov in [4]. Here, we reproduce it for reference purposes:

$$ \begin{aligned} W_{12}^{34} & = -\frac{1}{32{\pi^2}({k_1}{k_2}{k_3}{k_4})^{1/4}}\left\{-12{k_1}{k_2}{k_3}{k_4}\right.\\ &\quad - \frac{2}{g^2} ({\omega_1} +{\omega _2})^2 \left[{\omega _3}{\omega_4}(({\bf{k}}_1 \cdot{\bf k}_2) - k_1 k_2) + {\omega_1}{\omega _2}(( {\bf k}_3 \cdot {\bf k}_4) - k_3k_4) \right] \\ & \quad -\frac{2}{g^2} (\omega_1 - \omega_3)^2\left[{\omega _2}{\omega _4}(({\bf k}_1 \cdot {\bf k}_3) + {k_1}{k_3}) + {\omega _1}{\omega_3}(({\bf k}_2 \cdot{\bf k}_4) + k_2 k_4) \right]\\ & \quad - \frac{2}{g^2} (\omega_1- \omega_4)^2 \left[{\omega _2}{\omega_3}(({\bf k}_1 \cdot{\bf k}_4) + {k_1}{k_4}) +{\omega _1}{\omega _4}(({\bf k}_2 \cdot {\bf k}_3) +k_2 k_3) \right] \\& \quad + (({\bf k}_1\cdot {\bf k}_2) + k_1 k_2)(({\bf k}_3 \cdot {\bf k}_4) +k_3 k_4) \\&\quad + ( - ({\bf k}_1 \cdot {\bf k}_3) + k_1 k_3)( - ({\bf k}_2 \cdot {\bf k}_4) +{k_2}{k_4}) \\ & \quad + ( - ({{\bf k}_1}\cdot {\bf k}_4) + {k_1}{k_4})( -({{\bf k}_2}\cdot {\bf k}_3) + {k_2}{k_3}) \\ &\quad + 4{({\omega _1} + {\omega _2})^2}\frac{(({\bf {k}_1}\cdot{\bf k}_2) -{k_1}{k_2})(({{\bf k}_3}\cdot{\bf k}_4) -{k_3}{k_4})} {{\omega^2_{1 + 2}} -{{({\omega _1} + {\omega _2})}^2}} \\& \quad + 4{({\omega _1} - {\omega_3})^2} \frac{(({{\bf k}_1}\cdot {\bf k}_3) +{k_1}{k_3})(({{\bf k}_2}\cdot{\bf k}_4) +{k_2}{k_4})} {{\omega^2_{1 - 3}} -{{({\omega _1} - {\omega _3})}^2}} \\& \quad + 4{{({\omega _1} - {\omega_4})}^2}\frac{(({{\bf k}_1}\cdot{\bf k}_4) +{k_1}{k_4})(({{\bf k}_2}\cdot{\bf k}_3) +{k_2}{k_3})}{{\omega^2_{1 - 4}} -{{({\omega _1} - {\omega _4})}^2}}\}, \\ \end{aligned}$$
(7.16)

where we have used a shorthand notation ω1+2 ≡ ω(k 1 + k 2), etc.

From (7.16), one can see that the four-wave interaction coefficient \(W_{12}^{34}\) is zero if all four wavevectors are collinear. Thus, in 1D the gravity wave system is five-wave [5], see Hamiltonian (6.82).

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nazarenko, S.V. (2011). Solutions to Exercises. In: Wave Turbulence. Lecture Notes in Physics, vol 825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15942-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15942-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15941-1

  • Online ISBN: 978-3-642-15942-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics