Skip to main content

The Application of Pittsburgh-Style Learning Classifier Systems to Address Genetic Heterogeneity and Epistasis in Association Studies

  • Conference paper
Book cover Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

Abstract

Despite the growing abundance and quality of genetic data, genetic epidemiologists continue to struggle with connecting the phenotype of common complex disease to underlying genetic markers and etiologies. In the context of gene association studies, this process is greatly complicated by phenomena such as genetic heterogeneity (GH) and epistasis (gene-gene interactions), which constitute difficult, but accessible challenges for bioinformatisists. While previous work has demonstrated the potential of using Michigan-style Learning Classifier Systems (LCSs) as a direct approach to this problem, the present study examines Pittsburgh-style LCSs, an architecturally and functionally distinct class of algorithm, linked by the common goal of evolving a solution comprised of multiple rules as opposed to a single “best” rule. This study highlights the strengths and weaknesses of the Pittsburgh-style LCS architectures (GALE and GAssist) as they are applied to the GH/epistasis problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore, J., Asselbergs, F., Williams, S.: Bioinformatics challenges for genome-wide association studies. Bioinformatics 26(4), 445 (2010)

    Article  Google Scholar 

  2. Thornton-Wells, T., Moore, J., Haines, J.: Genetics, statistics and human disease: analytical retooling for complexity. Trends in Genetics 20(12), 640–647 (2004)

    Article  Google Scholar 

  3. Sing, C., Boerwinkle, E., Moll, P.: Strategies for elucidating the phenotypic and genetic heterogeneity of a chronic disease with a complex etiology. Progress in Clinical and Biological Research 194, 39 (1985)

    Google Scholar 

  4. Ritchie, M., Hahn, L., Moore, J.: Power of MDR for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genetic Epidemiology 24(2), 150–157 (2003)

    Article  Google Scholar 

  5. Ritchie, M., Edwards, T., Fanelli, T., Motsinger, A.: Genetic heterogeneity is not as threatening as you might think. Genetic Epidemiology 31(7), 797 (2007)

    Article  Google Scholar 

  6. Digna, T., Dudek, R., Ritchie, M.: Exploring the performance of multifactor dimensionality reduction in large scale SNP studies and in the presence of genetic heterogeneity among epistatic disease models. Hum. Hered. 67, 183–192 (2009)

    Article  Google Scholar 

  7. Ritchie, M., Hahn, L., Roodi, N., Bailey, L., Dupont, W., Parl, F., Moore, J.: MDR reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. The American Journal of Human Genetics 69(1), 138–147 (2001)

    Article  Google Scholar 

  8. Cordell, H.: Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics 11(20), 2463 (2002)

    Article  Google Scholar 

  9. Moore, J., Gilbert, J., Tsai, C., Chiang, F., Holden, T., Barney, N., White, B.: A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of Theoretical Biology 241(2), 252–261 (2006)

    Article  MathSciNet  Google Scholar 

  10. Urbanowicz, R., Moore, J.: The Application of Michigan-Style Learning Classifier Systems to Address Genetic Heterogeneity and Epistasis in Asssociation Studies. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation. ACM, New York (in Press, 2010)

    Google Scholar 

  11. Urbanowicz, R., Moore, J.: Learning Classifier Systems: A Complete Introduction, Review, and Roadmap. Journal of Artificial Evolution and Applications (2009)

    Google Scholar 

  12. Llora, X., Garrell, J.: Automatic Classification and Artificial Life Models. In: Proceedings of Learning Workshop IEEE and Univesidad Carlos III (2000)

    Google Scholar 

  13. Llora, X., Garrell, J., et al.: Knowledge-independent data mining with fine-grained parallel evolutionary algorithms. In: Proceedings of the Third Genetic and Evolutionary Computation Conference, pp. 461–468. Morgan Kaufmann, Citeseer (2001)

    Google Scholar 

  14. Bacardit, J.: Pittsburgh genetic-based machine learning in the data mining era: representations, generalization, and run-time. PhD thesis, Enginyeria i Arquitectura La Salle, Ramon Llull University, Barcelona, European Union, Catalonia, Spain (2004)

    Google Scholar 

  15. De Jong, K., Spears, W.: Learning concept classification rules using genetic algorithms. In: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, Citeseer, pp. 651–656 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urbanowicz, R.J., Moore, J.H. (2010). The Application of Pittsburgh-Style Learning Classifier Systems to Address Genetic Heterogeneity and Epistasis in Association Studies. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics