Skip to main content

Ligand Protected Gold Alloy Clusters as Superatoms

  • Conference paper
Book cover High Performance Computing in Science and Engineering '10

Abstract

Density functional study of the experimentally observed ligand-protected gold alloy clusters reveal the same stabilization mechanism as in ligand protected pure AuN: the delocalized s-electron subsystem of a high symmetry metal core exhibits a shell closing. On the basis of this observation it is predicted that the substitution of a single Au atom in the well-known Au25(SR)18 compound with Pd, Ag, and Cd will produce stable clusters resulting in a method to tune redox properties in such a nanoscale building block. Similar shell closings are shown to stabilize the cores of experimentally known carbonyl protected nickel-gold and nickel-silver clusters. These species can be understood as structurally as well as electronically separated, weakly interacting gold/silver and nickel-carbonyl subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Akola, M. Walter, R. Whetten, H. Häkkinen, and H. Grönbeck. On the structure of thiolate-protected Au25. J. Am. Chem. Soc., 130(12):3756–3757, 2008.

    Article  Google Scholar 

  2. H.-A.L. Arratia-Perez R. Relativistic electronic structure of an icosahedral Au12Pd cluster. Chem. Phys. Lett., 303:641–648, 1999.

    Article  Google Scholar 

  3. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch. Structural relaxation made simple. Phys. Rev. Lett., 97(17):170201, 2006.

    Article  Google Scholar 

  4. P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50(24):17953–17979, Dec 1994.

    Article  Google Scholar 

  5. G.C. Bond. The electronic structure of platinum-gold alloy particles. Platinum Metals Rev., 51(2):63–68, 2007.

    Article  Google Scholar 

  6. C. Burda, X. Chen, R. Narayanan, and M.A. El-Sayed. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 105:1025–1102, 2005.

    Article  Google Scholar 

  7. M.-C. Daniel and D. Astruc. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104:293–346, 2004.

    Article  Google Scholar 

  8. W.A. de Heer. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys., 65:611–676, 1993.

    Article  Google Scholar 

  9. D. en Jiang and S. Dai. From superatomic Au25(SR)18- to superatomic M@Au24(SR)18q core-shell clusters. Inorg. Chem., 48:2720–2722, 2009.

    Article  MathSciNet  Google Scholar 

  10. C. Fields-Zinna, M. Crowe, A. Dass, and R.W. Murray. Mass spectrometry of small bimetal monolayer-protected clusters. Langmuir, 25:7704–7710, 2009.

    Article  Google Scholar 

  11. M. Heaven, A. Dass, P. White, K. Holt, and R. Murray. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc., 130(12):3754–3755, 2008.

    Article  Google Scholar 

  12. S.A. Ivanov, M.A. Kozee, W.A. Merrill, S. Agarwal, and L.F. Dahl. Cyclo-[Ni(μ2-SPh)2]9 and cyclo-[Ni(μ2-SPh)2]11: new oligomeric types of toroidal nickel(ii) thiolates containing geometrically unprecedented 9- and 11-membered ring systems. J. Chem. Soc., Dalton Trans., pages 4105–4115, 2002.

    Google Scholar 

  13. P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, and R.D. Kornberg. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science, 318:430–433, 2007.

    Article  Google Scholar 

  14. A.J.W. Johnson, B. Spencerb, and L.F. Dahl. Synthesis and experimental/theoretical investigation of the high-nuclearity cubic td [au6ni12(co)24]2- cluster, an initial example of a discrete gold-nickel bimetallic-bonded species: comparative analysis of the results of electron-counting methods and the fenske-hall mo model in rationalizing the bonding interactions of its au6ni12 core consisting of five face-fused metal octahedra. Inorg. Chim. Ac., 227:269–283, 1994.

    Article  Google Scholar 

  15. M.A. Kozee, J.M. Zhang, and L.F. Dahl. Isostructural T-D [Au16Ni24(CO)(40)](4-) and [Ag16Ni24(CO)(40)](4-) clusters: Stabilization of a microscopic ccp chunk of gold or silver metal. Abstracts of Papers of Am. Chem. Soc., 219:U832–U832, 2000.

    Google Scholar 

  16. M. Laupp and J. Strähle. [(ph3pau)6(dppeau2)(aucl)4pd], an icosahedral au12 cluster with a central pd atom. Ang. Chem. Int. Ed., 33:207–209, 1994.

    Article  Google Scholar 

  17. J.J. Mortensen, L.B. Hansen, and K.W. Jacobsen. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B, 71:035109, 2005.

    Article  Google Scholar 

  18. G. Pacchioni, L. Ackermann, and N. Rösch. Chemical bonding in low-, medium- and high-nuclearity nickel carbonyl clusters. Gazz. Chim. Ital., 122:205–214, 1992.

    Google Scholar 

  19. G. Pacchioni and N. Rösch. Carbonylated nickle clusters: From molecules to metals. Acc. Chem. Res., 28:390–397, 1995.

    Article  Google Scholar 

  20. J.P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77:3865–3868, 1996.

    Article  Google Scholar 

  21. P. Pyykkö. Theoretical chemistry of gold. Ang. Chem. Int. Ed., 43:4412–4456, 2004.

    Article  Google Scholar 

  22. M. Ricco, T. Shiroka, S. Carretta, F. Bolzoni, C. Femoni, M.C. Iapalucci, and G. Longoni. The magnetic behaviour of [NnBu4]4[Ni16Pd16(CO)40]: An even-electron homoleptic carbonyl–metal cluster anion displaying a J=2 ground state. Chem. Eur. J., 11:2856–2861, 2005.

    Article  Google Scholar 

  23. N. Rösch, L. Ackermann, and G. Pacchioni. Developing magnetic and metallic behavior in high-nuclearity nickel cluster carbonyls. J. Am. Chem. Soc., 114:3549–3555, 1992.

    Article  Google Scholar 

  24. Y. Shichibu, Y. Negishi, H. Tsunoyama, M. Kanehara, T. Teranishi, and T. Tsukuda. Extremely high stability of glutathionate-protected au25 clusters against core etching. Small, 3:835–839, 2007.

    Article  Google Scholar 

  25. B.K. Teo and H. Zhang. Molecular and crystal structure of an iodo-gold-silver-platinum cluster, [(ph3p)6au6ag6pt(agi3)2](thf)2, with a trimetallic icosahedral core capped with two planar [agi3] units. J. Organomet. Chem., 614-615:66–69, 2000.

    Article  Google Scholar 

  26. N.T. Tran, M. Kawano, D.R. Powell, R.K. Hayashi, C.F. Campana, and L.F. Dahl. Isostructural [Au6Pd6(Pd6-xNix)Ni20(CO)44]6- and [Au6Ni32(CO)44]6- Clusters Containing Corresponding Nonstoichiometric Au6Pd6(Pd6-xNix)Ni20 and Stoichiometric Au6Ni32 Nanosized Cores: Substitutional Pd/Ni Crystal Disorder (Coloring Problem) at Only Six Specific Nonadjacent Pseudoequivalent Metal Sites in the 38-Atom Trimetallic Close-Packed Framework. J. Am. Chem. Soc., 121:5945–5952, 1999.

    Article  Google Scholar 

  27. D.A. van Leeuwen, J.M. van Ruitenbeek, L.J. de Jongh, A. Ceriotti, G. Pacchioni, O.D. Häberlen, and N. Rösch. Quenching of magnetic moments by ligand-metal interactions in nanosized magnetic metal clusters. Phys. Rev. Lett., 73(10):1432–1435, Sep 1994.

    Article  Google Scholar 

  28. M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Grönbeck, and H. Häkkinen. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Nat. Acad. Sc., 105(27):9157–9162, 2008.

    Article  Google Scholar 

  29. M. Walter and M. Moseler. How to observe the oxidation of magnesia supported Pd clusters by scanning tunnelling microscopy. Accepted by Phys. Stat. Solidi, 2009.

    Google Scholar 

  30. M. Walter and M. Moseler. Ligand protected gold alloy clusters: doping the superatom. J. Chem. Phys. C, 113:15834, 2009.

    Article  Google Scholar 

  31. A.J. Whoolery and L.F. Dahl. Synthesis and structural-bonding analysis of the [Au6Ni12(CO)24]2- dianion containing an unprecedented 18-vertex cubic td metal core composed of five face-fused octahedra: the first example of a discrete gold/nickel bimetallic-bonded species. J. Am. Chem. Soc., 113:6683–6685, 1991.

    Article  Google Scholar 

  32. J. Zhang and L.F. Dahl. First-known high-nuclearity silver–nickel carbonyl cluster: nanosized [Ag16Ni24(CO)40]4- possessing a new 40-atom cubic Td closed-packed metal-core geometry. J. Chem. Soc., Dalton Trans., page 1269–1274, 2002.

    Google Scholar 

  33. M. Zhu, C.M. Aikens, F.J. Hollander, G.C. Schatz, and R. Jin. Correlating the crystal structure of a thiol-protected au25 cluster and optical properties. J. Am. Chem. Soc., 130(18):5883–5885, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walter, M. (2011). Ligand Protected Gold Alloy Clusters as Superatoms. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_3

Download citation

Publish with us

Policies and ethics