Skip to main content

Si(111)-In Nanowire Optical Response from Large-scale Ab Initio Calculations

  • Conference paper
High Performance Computing in Science and Engineering '10

Abstract

The anisotropic optical response of Si(111)-(4×1)/(8×2)-In in the mid-infrared, where significant changes in the band structure between competing models of this important quasi-1D system are expected, has been calculated from first principles. Two characteristic peaks are calculated for the hexagon model of the (8×2) structure, but not for the trimer model. The comparison with recent infrared reflection anisotropy spectroscopy (RAS) data—showing the replacement of the anisotropic Drude tail of the (4×1) phase by two peaks at 0.50 eV and 0.72 eV—gives strong evidence for the hexagon model. Our calculations thus settle decades of intense debate about the ground-state geometry of this important prototype for quasi one-dimensional electronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elliott H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).

    Article  Google Scholar 

  2. F.J. Himpsel, K.N. Altman, R. Bennewitz, J.N. Crain, A. Kirakosian, J.L. Lin, and J.L. McChesney, J. Phys.: Condens. Matter 13, 11097 (2001).

    Article  Google Scholar 

  3. T. Abukawa, M. Sasaki, F. Hisamatsu, T. Goto, T. Kinoshita, A. Kakizaki, and S. Kono, Surf. Sci. 325, 33 (1995).

    Article  Google Scholar 

  4. I.G. Hill and A.B. McLean, Phys. Rev. Lett. 82, 2155 (1999).

    Article  Google Scholar 

  5. O. Bunk, G. Falkenberg, J.H. Zeysing, L. Lottermoser, R.L. Johnson, M. Nielsen, F. Berg-Rasmussen, J. Baker, and R. Feidenhans’l, Phys. Rev. B 59, 12228 (1999).

    Article  Google Scholar 

  6. J.-H. Cho, D.-H. Oh, K.S. Kim, and L. Kleinman, Phys. Rev. B 64, 235302 (2001).

    Article  Google Scholar 

  7. S. Wang, W. Lu, W.G. Schmidt, and J. Bernholc, Phys. Rev. B 68, 035329 (2003).

    Article  Google Scholar 

  8. K. Fleischer, S. Chandola, N. Esser, W. Richter, and J.F. McGilp, Phys. Rev. B 67, 235318 (2003).

    Article  Google Scholar 

  9. J.-H. Cho, J.-Y. Lee, and L. Kleinman, Phys. Rev. B 71, 081310(R) (2005).

    Google Scholar 

  10. X. Lopez-Lozano, A. Krivosheeva, A.A. Stekolnikov, L. Meza-Montes, C. Noguez, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 035430 (2006).

    Article  Google Scholar 

  11. K. Fleischer, S. Chandola, N. Esser, W. Richter, and J.F. McGilp, Phys. Rev. B 76, 205406 (2007).

    Article  Google Scholar 

  12. T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, and S. Hasegawa, Phys. Rev. Lett. 91, 036805 (2003).

    Article  Google Scholar 

  13. A.A. Stekolnikov, K. Seino, F. Bechstedt, S. Wippermann, W.G. Schmidt, A. Calzolari, and M. Buongiorno Nardelli, Phys. Rev. Lett. 98, 026105 (2007).

    Article  Google Scholar 

  14. S. Wippermann, N. Koch, and W.G. Schmidt, Phys. Rev. Lett. 100, 106802 (2008).

    Article  Google Scholar 

  15. H.W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C.M. Lee, S.D. Kevan, T. Ohta, T. Nagao, and S. Hasegawa, Phys. Rev. Lett. 82, 4898 (1999).

    Article  Google Scholar 

  16. T. Tanikawa, I. Matsuda, T. Kanagawa, and S. Hasegawa, Phys. Rev. Lett. 93, 016801 (2004).

    Article  Google Scholar 

  17. J.R. Ahn, J.H. Byun, H. Koh, E. Rotenberg, S.D. Kevan, and H.W. Yeom, Phys. Rev. Lett. 93, 106401 (2004).

    Article  Google Scholar 

  18. S.J. Park, H.W. Yeom, S.H. Min, D.H. Park, and I.W. Lyo, Phys. Rev. Lett. 93, 106402 (2004).

    Article  Google Scholar 

  19. J. Guo, G. Lee, and E.W. Plummer, Phys. Rev. Lett. 95, 046102 (2005).

    Article  Google Scholar 

  20. K. Sakamoto, H. Ashima, H.W. Yeom, and W. Uchida, Phys. Rev. B 62, 9923 (2000).

    Article  Google Scholar 

  21. Y.J. Sun, S. Agario, S. Souma, K. Sugawara, Y. Tago, T. Sato, and T. Takahashi, Phys. Rev. B 77, 125115 (2008).

    Article  Google Scholar 

  22. T. Uchihashi and U. Ramsperger, Appl. Phys. Lett. 80, 4169 (2002).

    Article  Google Scholar 

  23. H.W. Yeom, K. Horikoshi, H.M. Zhang, K. Ono, and R.I.G. Uhrberg, Phys. Rev. B. 65, 241307(R) (2002).

    Article  Google Scholar 

  24. C. Gonzalez, F. Flores, and J. Ortega, Phys. Rev. Lett. 96, 136101 (2006).

    Article  Google Scholar 

  25. Jun-Hyung Cho and Jung-Yup Lee, Phys. Rev. B 76, 033405 (2007).

    Article  Google Scholar 

  26. Y. Fukaya, M. Hashimoto, A. Kawasuso, and A. Ichimiya, Surf. Sci. 602, 2448 (2008).

    Article  Google Scholar 

  27. S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W.G. Schmidt, F. Bechstedt, K. Fleischer, and J.F. Mcgilp, Phys. Rev. Lett. 102, 226805 (2009).

    Article  Google Scholar 

  28. G. Kresse and J. Furthmüller, Comp. Mat. Sci. 6, 15 (1996).

    Article  Google Scholar 

  29. W. Richter, Philos. T. Roy. Soc. A 344, 453 (1993).

    Article  Google Scholar 

  30. D.E. Aspnes, Solid State Commun. 101, 85 (1997).

    Article  Google Scholar 

  31. P. Weightman, D.S. Martin, R.J. Cole, and T. Farrel, Rep. Prog. Phys. 68, 1251 (2005).

    Article  Google Scholar 

  32. W.G. Schmidt, F. Bechstedt, and J. Bernholc, J. Vac. Sci. Technol. B 18, 2215 (2000).

    Article  Google Scholar 

  33. W.G Schmidt, K. Seino, P.H. Hahn, F. Bechstedt, W. Lu, S. Wang, and J. Bernholc, Thin Solid Films 455/456, 764 (2004).

    Article  Google Scholar 

  34. W.G. Schmidt, F. Fuchs, A. Hermann, K. Seino, F. Bechstedt, R. Paßmann, M. Wahl, M. Gensch, K. Hinrichs, N. Esser, S. Wang, W. Lu, and J. Bernholc, J. Phys.: Condens. Matter 16, S4323 (2004).

    Article  Google Scholar 

  35. J.D.E. McIntyre and D.E. Aspnes, Surf. Sci. 24, 417 (1971).

    Article  Google Scholar 

  36. A. Bagchi, R.G. Barrera, and A.K. Rajagopal, Phys. Rev. B 20, 4824 (1979).

    Article  Google Scholar 

  37. R. Del Sole, Solid State Commun. 37, 537 (1981).

    Article  Google Scholar 

  38. R. Del Sole and E. Fiorino, Phys. Rev. B 29, 4631 (1984).

    Article  Google Scholar 

  39. F. Manghi, R. Del Sole, A. Selloni, and E. Molinari, Phys. Rev. B 41, 9935 (1990).

    Article  Google Scholar 

  40. K. Fleischer, S. Chandola, Norbert Esser, W. Richter, J.F. Mcgilp, W.G. Schmidt, S. Wang, W. Lu, and J. Bernholc, Appl. Surf. Sci. 234, 302 (2004).

    Article  Google Scholar 

  41. S. Wippermann and W.G. Schmidt, Surf. Sci. 603, 247 (2009).

    Article  Google Scholar 

  42. P.H. Hahn, W.G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 88, 016402 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, W.G. et al. (2011). Si(111)-In Nanowire Optical Response from Large-scale Ab Initio Calculations. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_11

Download citation

Publish with us

Policies and ethics