Skip to main content

Nonketotic Hyperglycinaemia (Glycine Encephalopathy)

  • Chapter

Abstract

Nonketotic hyperglycinaemia (NKH) or glycine encephalopathy is an autosomal recessive disorder characterised by a rapidly progressive course in the neonatal period or early infancy. Symptoms include muscular hypotonia, seizures, apnoeic attacks, lethargy and coma. Most patients die within a few weeks, whilst survivors show severe psychomotor retardation. Increased glycine concentrations in plasma, urine, and cerebrospinal fluid are biochemical features of the disorder. The primary lesion is a defect in the glycine cleavage system (GCS) (◘ Fig. 24.1). Although this was first demonstrated in the liver, involvement within the brain is responsible for the clinical expression. No specific treatment is available. Prenatal diagnosis is possible by determining the activity of GCS in chorionic villi and by molecular analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [1] Tada K, Kure S (1993) Non-ketotic hyperglycinaemia: molecular lesion, diagnosis and pathophysiology. J Inherit Metab Dis 16:691–703

    Article  PubMed  CAS  Google Scholar 

  • [2] Dobyns WB (1989) Agenesis of the corpus callosum and gyral malformations are frequent manifestations of nonketotic hyperglycinemia. Neurology 39:817–820

    PubMed  CAS  Google Scholar 

  • [3] Paupe A, Bidat L, Sonigo P et al. (2002) Prenatal diagnosis of hypoplasia of the corpus callosum in association with non-ketotic hyperglycinemia. Ultrasound Obstet Gynecol 20:616–619

    Article  PubMed  CAS  Google Scholar 

  • [4] Ozyürek H, Turanli G, Aliefendioglu D, Coskun T (2005) Repetitive EEG recordings are necessary for the diagnosis of early myoclonic encephalopathy. Neurol India 53:235–237

    Article  PubMed  Google Scholar 

  • [5] Mourmans J, Majoie CB, Barth PG et al. (2006) Sequential MR imaging changes in nonketotic hyperglycinemia. AJNR Am J Neuroradiol 27:208–211

    PubMed  CAS  Google Scholar 

  • [6] Hoover-Fong JE, Shah S, Van Hove JL et al. (2004) Natural history of nonketotic hyperglycinemia in 65 patients. Neurology 63:1847–1853

    PubMed  CAS  Google Scholar 

  • [7] Huisman TA, Thiel T, Steinmann B et al. (2002) Proton magnetic resonance spectroscopy of the brain of a neonate with nonketotic hyperglycinemia: in vivo-in vitro (ex vivo) correlation. Eur Radiol 2002 12:858–861

    Article  PubMed  CAS  Google Scholar 

  • [8] Huisman TA, Thiel T, Steinmann B et al. (2002) Proton magnetic resonance spectroscopy of the brain of a neonate with nonketotic hyperglycinemia: in vivo-in vitro (ex vivo) correlation, Eur Radiol 12:858–861

    Article  PubMed  CAS  Google Scholar 

  • [9] Cataltepe S, Marter v LJ, Kozakewich H et al. (2000) Pulmonary hypertension associated with nonketotic hyperglycinaemia. J Inherit Metab Dis 23:137–144

    Article  PubMed  CAS  Google Scholar 

  • [10] Chien YH, Hsu CC, Huang A et al. (2004) Poor outcome for neonatal- type nonketotic hyperglycinemia treated with high-dose sodium benzoate and dextromethorphan. J Child Neurol 19:39–42

    Article  PubMed  Google Scholar 

  • [11] Luder AS, Davidson A, Goodman SI, Greene CL (1989) Transient nonketotic hyperglycinemia in neonates. J Pediatr 114:1013–1015

    Article  PubMed  CAS  Google Scholar 

  • [12] Zammarchi E, Donati MA, Ciani F (1995) Transient neonatal nonketotic hyperglycinemia: a 13-year follow-up. Neuropediatrics 26:328–330

    Article  PubMed  CAS  Google Scholar 

  • [13] Manley BJ, Sokol J, Cheong JL (2010) Intracerebral blood and MRS in neonatal nonketotic hyperglycinemia. Pediatr Neurol 42:219–222

    Article  PubMed  Google Scholar 

  • [14] Korman SH, Boneh A, Ichinohe A et al. ( 2004) Persistent NKH with transient or absent symptoms and a homozygous GLDC mutation. Ann Neurol 56:139–143

    Article  PubMed  CAS  Google Scholar 

  • [15] Kure S, Kojima K, Ichinohe A et al. (2002) Heterozygous GLDC and GCSH gene mutations in transient neonatal hyperglycinemia. Ann Neurol 52:643–646

    Article  PubMed  CAS  Google Scholar 

  • [16] Lang TF, Parr JR, Matthews EE et al. (2008) Practical difficulties in the diagnosis of transient non-ketotic hyperglycinaemia. Dev Med Child Neurol 50:157–159

    Article  PubMed  CAS  Google Scholar 

  • [17] Flusser H, Korman SH, Sato K et al. (2005) Mild glycine encephalopathy (NKH) in a large kindred due to a silent exonic GLDC splice mutation. Neurology 64:1426–1430

    Article  PubMed  CAS  Google Scholar 

  • [18] Suzuki Y, Kure S, Oota M et al. (2010) Nonketotic hyperglycinemia: proposal of a diagnostic and treatment strategy. Pediatr Neurol 43:221–224

    Article  PubMed  Google Scholar 

  • [19] Boneh A, Allan S, Mendelson D et al. (2008) Clinical, ethical and legal considerations in the treatment of newborns with nonketotic hyperglycinaemia. Mol Genet Metab 94:143–147

    Article  PubMed  CAS  Google Scholar 

  • [20] Dinopoulos A, Kure S, Chuck G et al. (2004) Atypical non-ketotic hyperglycinemia: 3 cases with GLDC mutations (poster). J Inherit Metab Dis 27 [Suppl 1]:62

    Google Scholar 

  • [21] Del Toro M, Macaya A, Moreno et al. (2004) Rapidly progressive infantile leukoencephalopathy associated with nonketotic hyperglycinemia and pulmonary hypertension (poster). J Inherit Metab Dis 27 [Suppl 1]:61

    Google Scholar 

  • [22] Morrison PF, Sankar R, Shields WD (2006) Valproate-induced chorea and encephalopathy in atypical nonketotic hyperglycinemia. Pediatr Neurol 35:356–358

    Article  PubMed  Google Scholar 

  • [23] Bekiesiniska-Figatowska M, Rokicki D, Walecki J (2001) MRI in nonketotic hyperglycinaemia: case report. Neuroradiology 43:792–793

    Article  PubMed  CAS  Google Scholar 

  • [24] Chiong MA, Procopis P, Carpenter K, Wilcken B (2007) Late-onset nonketotic hyperglycinemia with leukodystrophy and an unusual clinical course. Pediatr Neurol 37:283–286

    Article  PubMed  Google Scholar 

  • [25] Lin FY, Gascon GG, Hyland K et al. (2006) Transient nonketotic hyperglycinemia and defective serotonin metabolism in a child with neonatal seizures. J Child Neurol 21:900–903

    Article  PubMed  Google Scholar 

  • [26] Ellaway CJ, Mundy H, Lee PJ ( 2001) Successful pregnancy outcome in atypical hyperglycinaemia. J Inherit Metab Dis 24:599–600

    Article  PubMed  CAS  Google Scholar 

  • [27] Hasegawa T, Shiga Y, Matsumoto A et al. (2002) Late-onset nonketotic hyperglycinemia: a case report. No To Shinkei 54:1068–1072

    PubMed  Google Scholar 

  • [28] Toone JR, Applegarth DA, Coulter-Mackie MB, James ER ( 2000) Biochemical and molecular investigations of patients with nonketotic hyperglycinemia. Mol Genet Metab 70:116–121

    Article  PubMed  CAS  Google Scholar 

  • [29] Wasterlain CG, Shirasaka Y (1994) Seizures, brain damage and brain development. Brain Dev 16:279–295

    Article  PubMed  CAS  Google Scholar 

  • [30] Sato K, Yoshiada S, Fujiwara K et al. (1991) Glycine cleavage system in astrocytes. Brain Res 567:64–70

    Article  PubMed  CAS  Google Scholar 

  • [31] Ben Ari Y, Khazipov R, Leinekugel X et al. (1997) GABA-A, NMDA and AMPA receptors: a developmentally regulated »menage à trois«. Trends Neurosci 20:523–529

    Article  PubMed  CAS  Google Scholar 

  • [32] Molinari F, Raas-Rothschild A, Rio M et al. (2005) Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet 76:334–339

    Article  PubMed  CAS  Google Scholar 

  • [33] Milh M, Becq H, Villeneuve N et al. (2009) Inhibition of glutamate transporters results in suppression-burst pattern and partial seizures in the newborn rat. Epilepsia 48:169–174

    Google Scholar 

  • [34] Busanello EN, Moura AP, Viegas CM et al. (2010) Neurochemical evidence that glycine induces bioenergetical dysfunction. Neurochem Int 56:948–954

    Article  PubMed  CAS  Google Scholar 

  • [35] Aprison MH, Werman R (1965) The distribution of glycine in cat spinal cord and roots. Life Sci 4:2075–2083

    Article  PubMed  CAS  Google Scholar 

  • [36] Kure S, Narisawa K, Tada K (1991) Structural and expression analyses of normal and mutant mRNA encoding glycine decarboxylase: three-base deletion in mRNA causes nonketotic hyperglycinemia. Biochem Biophys Res Commun 174:1176–1182

    Article  PubMed  CAS  Google Scholar 

  • [37] Hyasaka K, Nanao K, Takada G et al. (1993) Isolation and sequence determination of cDNA encoding human T-protein of the glycine cleavage system. Biochem Biophys Res Commun 192:766–771

    Article  Google Scholar 

  • [38] Applegarth DA, Toone JR (2004) Glycine encephalopathy (nonketotic hyperglycinaemia): review and update. J Inherit Metab Dis 27:417–422

    Article  PubMed  CAS  Google Scholar 

  • [39] Applegarth DA, Toone JR (2001) Nonketotic hyperglycinemia (glycine encephalopathy): laboratory diagnosis. Mol Genet Metab 74:139–146

    Article  PubMed  CAS  Google Scholar 

  • [40] Kure S, Takayanagi M, Kurihara Y et al. (1999) Nonketotic hyperglycinemia: mutation spectra of the GLDC and AMT gene in Finnish and non-Finnish populations. Am J Hum Genet 65:A2406

    Google Scholar 

  • [41] Toone JR, Applegarth DA, Kure S et al. (2002) Novel mutations in the P-protein (glycine decarboxylase) gene in patients with glycine encephalopathy (non-ketotic hyperglycinemia). Mol Genet Metab 76:243–249

    Article  PubMed  CAS  Google Scholar 

  • [42] Hove v JLK, Mahieu V, Schollen E (2004) Prognosis in nonketotic hyperglycinemia. J Inherit Metab Dis 26:71

    Google Scholar 

  • [43] Kanno J, Hutchin T, Kamada F et al. (2007) Genomic deletion within GLDC is a major cause of non-ketotic hyperglycinaemia. J Med Genet 44:e69

    Article  PubMed  Google Scholar 

  • [44] Kure S, Narisawa K, Tada K(1992) Enzymatic diagnosis of nonketotic hyperglycinemia with lymphoblasts. J Pediatr 120:95–98

    Article  PubMed  CAS  Google Scholar 

  • [45] Tan ES, Wiley V, Carpenter K, Wilcken B (2007) Non-ketotic hyperglycinemia is usually not detectable by tandem mass spectrometry newborn screening. Mol Genet Metab 90:446–448

    Article  PubMed  CAS  Google Scholar 

  • [46] Vigevano F, Maccagnani F, Bertini E et al. (1982) Enceflopatia mioclonica precoce associata ad alti livelli di acido propioico nel siero. Boll Lega It Epil 39:181–182

    Google Scholar 

  • [47] Dreyfus-Brisac C, Cukier F (1969) Le tracé paroxystique: sa valeur pronostique selon le degré de prématurité. Rev Neuropsychiatr Infant 17:795–802

    PubMed  CAS  Google Scholar 

  • [48] Pampiglione G (1962) Electroencephalographic studies after cardiorespiratory resuscitation. Proc R Soc Med 55:653–657

    PubMed  CAS  Google Scholar 

  • [49] Lombroso CT (1990) Early myoclonic encephalopathy, early infantile epileptic encephalopathy, and benign and severe infantile myoclonic epilepsies: a critical review and personal contributions. J Clin Neurophysiol 7:380–408

    Article  PubMed  CAS  Google Scholar 

  • [50] Schlumberger E, Dulac O, Plouin P (1992) Syndrome of neonatal epilepsy. Epilepsy syndromes in childhood and adolescence. Libbey, London Paris Rome, pp 35–42

    Google Scholar 

  • [51] Maeda T, Inutsuka M, Goto K, Izumi T (2000) Transient nonketotic hyperglycinemia in an asphyxiated patient with pyridoxinedependent seizures. Pediatr Neurol 22:225–227

    Article  PubMed  CAS  Google Scholar 

  • [52] Aukett A, Bennett MJ, Hosking GP (1988) Molybdenum cofactor deficiency: an early missed inborn error of metabolism. Dev Med Child Neurol 30:531–535

    Article  PubMed  CAS  Google Scholar 

  • [53] Dalla Bernardina B, Dulac O, Fejerman N et al. (1983) Early myoclonic epileptic encephalopathy (EMEE). Eur J Pediatr 140:248–252

    Article  PubMed  CAS  Google Scholar 

  • [54] Wolf NI,Garcia-Cazorla A, Hoffmann GF (2009) Epilepsy and inborn error of metabolism in children. J Inherit Metab Dis 32:609–617

    Article  PubMed  CAS  Google Scholar 

  • [55] Ohtahara S (1978) Clinico-electrical delineation of epileptic encephalopathies in childhood. Asian Med J 21:499–509

    Google Scholar 

  • [56] Knaap v d MS, Wevers RA, Kure S et al. (1999) Increased cerebrospinal fluid glycine: a biochemical marker for a leukoencephalopathy with vanishing white matter. J Child Neurol 14:728–731

    Article  Google Scholar 

  • [57] Sener RN(2003) The glycine peak in brain diseases. Comput Med Imaging Graph 27:297–305

    Article  PubMed  CAS  Google Scholar 

  • [58] Applegarth DA, Toone JR, Rolland MO et al. (2000) Non-concordance of CVS and liver glycine cleavage enzyme in three families with non-ketotic hyperglycinaemia (NKH) leading to false negative prenatal diagnoses. Prenat Diagn 20:367–370

    Article  PubMed  CAS  Google Scholar 

  • [59] Vianey-Saban C, Chevalier-Porst F, Froissart R, Rolland MO (2003) Prenatal Diagnosis of nonketotic Hyperglycinemia: a 13-year experience, from enzymatic to molecular analysis. J Inherit Metab Dis 26 [Suppl 2]:164-P

    Google Scholar 

  • [60] Garcia-Munoz MJ, Belloque J, Merinero B et al. (1989) Non-ketotic hyperglycinaemia: glycine/serine ratio in amniotic fluid -- an unreliable method for prenatal diagnosis. Prenat Diagn 9:473–476

    Article  PubMed  CAS  Google Scholar 

  • [61] Palekar A (2000) Effect of panthotenic acid on hippurate formation in sodium benzoate-treated HepG2 cells. Pediatr Res 48:357–359

    Article  PubMed  CAS  Google Scholar 

  • [62] Wiltshire EJ, Poplawski NK, Harrison JR, Flechter JM (2000) Treatment of late-onset nonketotic hyperglycinaemia: effectiveness of imipramine and benzoate. J Inherit Met Dis 23:15–21

    Article  CAS  Google Scholar 

  • [63] Matsuo S, Inoue F, Takeuchi Y et al. (1995) Efficacy of tryptophan for the treatment of nonketotic hyperglycinemia: a new therapeutic approach for modulating the N-methyl-d-aspartate receptor. Pediatrics 95:142–146

    PubMed  CAS  Google Scholar 

  • [64] Tekgul H, Serdaroğlu G, Karapinar B et al. (2006) Vigabatrin caused rapidly progressive deterioration in two cases with early myoclonic encephalopathy associated with nonketotic hyperglycinemia. J Child Neurol 21:82–84

    Article  PubMed  Google Scholar 

  • [65] Tsao CY (2010) The efficacy of vagus nerve stimulation in intractable epilepsy associated with nonketotic hyperglycinemia in two children. J Child Neurol 25:375–378

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dulac, O., Rolland, MO. (2012). Nonketotic Hyperglycinaemia (Glycine Encephalopathy). In: Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15720-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15720-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15719-6

  • Online ISBN: 978-3-642-15720-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics