Skip to main content

Disorders of Tyrosine Metabolism

  • Chapter

Abstract

Five inherited disorders of tyrosine metabolism are known, which are depicted in ◘ Fig. 18.1. Hereditary tyrosinaemia type I is characterised by progressive liver disease and renal tubular dysfunction with rickets. Hereditary tyrosinaemia type II (Richner-Hanhart syndrome) presents with keratitis and blistering lesions of the palms and soles. Tyrosinaemia type III may be asymptomatic or associated with mental retardation. Hawkinsinuria may be asymptomatic or present with failure to thrive and metabolic acidosis in infancy. In alkaptonuria symptoms of osteoarthritis usually appear in adulthood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spronsen v FJ, Thomasse Y, Smit GP et al. (1994) Hereditary tyrosinemia type I: a new clinical classification with difference in prognosis on dietary treatment. Hepatology 20:1187–1191

    Article  PubMed  Google Scholar 

  2. Weinberg AG, Mize CE, Worthen HG (1976) The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 88:434–438

    Article  PubMed  CAS  Google Scholar 

  3. Forget S, Patriquin HB, Dubois J et al. (1999) The kidney in children with tyrosinemia: sonographic, CT and biochemical findings. Pediatr Radiol 29:104–108

    Article  PubMed  CAS  Google Scholar 

  4. Santra S, Preece MA, Hulton SA, McKiernan PJ (2008) Renal tubular function in children with tyrosinaemia type I treated with nitisinone. J Inherit Metab Dis 31:399–402

    Article  PubMed  CAS  Google Scholar 

  5. Mitchell G, Larochelle J, Lambert M et al. (1990) Neurologic crises in hereditary tyrosinemia. N Engl J Med 322:432–437

    Article  PubMed  CAS  Google Scholar 

  6. Arora N, Stumper O, Wright J et al. (2006) Cardiomyopathy in tyrosinaemia type I is common but usually benign. J Inherit Metab Dis 29:54–57

    Article  PubMed  CAS  Google Scholar 

  7. Baumann U, Preece MA, Green A et al. (2005) Hyperinsulinism in tyrosinaemia type I. J.Inherit.Metab Dis 28:131–135

    CAS  Google Scholar 

  8. Manabe S, Sassa S, Kappas A (1985) Hereditary tyrosinemia. Formation of succinylacetone-amino acid adducts. J Exp Med 162:1060–1074

    Article  PubMed  CAS  Google Scholar 

  9. Jorquera R, Tanguay RM (1997) The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun 232:42–48

    Article  PubMed  CAS  Google Scholar 

  10. Endo F, Sun MS (2002) Tyrosinaemia type I and apoptosis of hepatocytes and renal tubular cells. J Inherit Metab Dis 25:227–234

    Article  PubMed  CAS  Google Scholar 

  11. Tanguay RM, Jorquera R, Poudrier J, St Louis M (1996) Tyrosine and its catabolites: from disease to cancer. Acta Biochim Pol 43:209–216

    PubMed  CAS  Google Scholar 

  12. Kvittingen EA, Rootwelt H, Berger R, Brandtzaeg P (1994) Selfinduced correction of the genetic defect in tyrosinemia type I. J Clin Invest 94:1657–1661

    Article  PubMed  CAS  Google Scholar 

  13. Demers S, I, Russo P, Lettre F, Tanguay RM (2003) Frequent mutation reversion inversely correlates with clinical severity in a genetic liver disease, hereditary tyrosinemia. Hum Pathol 34:1313–1320

    Article  PubMed  CAS  Google Scholar 

  14. Roth KS, Carter BE, Higgins ES (1991) Succinylacetone effects on renal tubular phosphate metabolism: a model for experimental renal Fanconi syndrome. Proc Soc Exp Biol Med 196:428–431

    PubMed  CAS  Google Scholar 

  15. Giger U, Meyer UA (1983) Effect of succinylacetone on heme and cytochrome P450 synthesis in hepatocyte culture. FEBS Lett 153:335–338

    Article  PubMed  CAS  Google Scholar 

  16. Tschudy DP, Hess A, Frykholm BC, Blease BM (1982) Immunosuppressive activity of succinylacetone. J Lab Clin Med 99:526–532

    PubMed  CAS  Google Scholar 

  17. Stenson PD, Ball EV, Mort M et al. (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21:577–581

    Article  PubMed  CAS  Google Scholar 

  18. Poudrier J, Lettre F, Scriver CR et al. (1998) Different clinical forms of hereditary tyrosinemia (type I) in patients with identical genotypes. Mol Genet Metab 64:119–125

    Article  PubMed  CAS  Google Scholar 

  19. Poudrier J, Lettre F, Scriver CR, et al. (2009) A novel mutation causing mild, atypical fumarylacetoacetase deficiency (tyrosinemia type I): a case report. Orphanet J Rare Dis 4:28

    Article  Google Scholar 

  20. Rootwelt H, Brodtkorb E, Kvittingen EA (1994) Identification of a frequent pseudodeficiency mutation in the fumarylacetoacetase gene, with implications for diagnosis of tyrosinemia type I. Am J Hum Genet 55:1122–1127

    PubMed  CAS  Google Scholar 

  21. Halvorsen S (1980) Screening for disorders of tyrosine metabolism. In: Bickel H, Guthrie R, Hammersen G (eds) Neonatal screening for inborn errors of metabolism. Springer, Berlin Heidelberg New York, pp 45–57

    Google Scholar 

  22. Schulze A, Frommhold D, Hoffmann GF, Mayatepek E (2001) Spectrophotometric microassay for delta-aminolevulinate dehydratase in dried-blood spots as confirmation for hereditary tyrosinemia type I. Clin Chem 47:1424–1429

    PubMed  CAS  Google Scholar 

  23. Allard P, Grenier A, Korson MS, Zytkovicz TH (2004) Newborn screening for hepatorenal tyrosinemia by tandem mass spectrometry: analysis of succinylacetone extracted from dried blood spots. Clin Biochem 37:1010–1015

    Article  PubMed  CAS  Google Scholar 

  24. Poudrier J, Lettre F, St Louis M, Tanguay RM (1999) Genotyping of a case of tyrosinaemia type I with normal level of succinylacetone in amniotic fluid. Prenat Diagn 19:61–63

    Article  PubMed  CAS  Google Scholar 

  25. Lock EA, Ellis MK, Gaskin P et al. (1998) From toxicological problem to therapeutic use: the discovery of the mode of action of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3- cyclohexanedione (NTBC), its toxicology and development as a drug. J Inherit Metab Dis 21:498–506

    Article  PubMed  CAS  Google Scholar 

  26. Holme E, Lindstedt S (2000) Nontransplant treatment of tyrosinemia. Clin Liver Dis 4:805–814

    Article  PubMed  CAS  Google Scholar 

  27. Hall MG, Wilks MF, Provan WM et al. (2001) Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. Br J Clin Pharmacol 52:169–177

    Article  PubMed  CAS  Google Scholar 

  28. Vogel A, Van Den Berg IE, Al Dhalimy M et al. (2004) Chronic liver disease in murine hereditary tyrosinemia type 1 induces resistance to cell death. Hepatology 39:433–443

    Article  PubMed  CAS  Google Scholar 

  29. Masurel-Paulet A, Poggi-Bach J, Rolland MO et al. (2008) NTBC treatment in tyrosinaemia type I: long-term outcome in French patients. J Inherit.Metab Dis. 31:81–87

    Article  PubMed  CAS  Google Scholar 

  30. Mohan N, McKiernan P, Preece MA et al. (1999) Indications and outcome of liver transplantation in tyrosinaemia type 1. Eur J Pediatr 158 [Suppl 2]:S49-S54

    Article  PubMed  Google Scholar 

  31. Wijburg FA, Reitsma WC, Slooff MJ et al. (1995) Liver transplantation in tyrosinaemia type I: the Groningen experience. J Inherit Metab Dis 18:115–118

    Article  PubMed  CAS  Google Scholar 

  32. Laine J, Salo MK, Krogerus L et al. (1995) The nephropathy of type I tyrosinemia after liver transplantation. Pediatr Res 37:640–645

    Article  PubMed  CAS  Google Scholar 

  33. Wilson CJ, Wyk v KG, Leonard JV, Clayton PT (2000) Phenylalanine supplementation improves the phenylalanine profile in tyrosinaemia. J Inherit Metab Dis 23:677–683

    Article  PubMed  CAS  Google Scholar 

  34. Cerone R, Fantasia AR, Castellano E et al. (2002) Pregnancy and tyrosinaemia type II. J Inherit Metab Dis 25:317–318

    Article  PubMed  CAS  Google Scholar 

  35. Buist NRM, Kennaway NG, Fellman JH (1985) Tyrosinaemia type II. In: Bickel H, Wachtel U (eds) Inherited diseases of amino acid metabolism. Thieme, Stuttgart, pp 203–235

    Google Scholar 

  36. Heidemann DG, Dunn SP, Bawle EV, Shepherd DM (1989) Early diagnosis of tyrosinemia type II. Am J Ophthalmol 107:559–560

    PubMed  CAS  Google Scholar 

  37. Rabinowitz LG, Williams LR, Anderson CE et al. (1995) Painful keratoderma and photophobia: hallmarks of tyrosinemia type II. J Pediatr 126:266–269

    Article  PubMed  CAS  Google Scholar 

  38. Fois A, Borgogni P, Cioni M et al. (1986) Presentation of the data of the Italian registry for oculocutaneous tyrosinaemia. J Inherit Metab Dis 9:262–264

    Article  Google Scholar 

  39. Bohnert A, Anton-Lamprecht I (1982) Richner-Hanhart syndrome: ultrastructural abnormalities of epidermal keratinization indicating a causal relationship to high intracellular tyrosine levels. J Invest Dermatol 72:68–74

    Article  Google Scholar 

  40. Pasternack SM, Betz RC, Brandrup F et al. (2009) Identification of two new mutations in the TAT gene in a Danish family with tyrosinaemia type II. Br J Dermatol 160:704–706

    Article  PubMed  CAS  Google Scholar 

  41. Maydan G, Fehler! Hyperlink-Referenz ungültig., TAT gene mutation analysis in three Palestinian kindreds with oculocutaneous tyrosinaemia type II; characterization of a silent exonic transversion that causes complete missplicing by exon 11 skipping. J Inherit Metab Dis. 29:620–626

    Google Scholar 

  42. Meissner T, Betz RC, Pasternack SM et al. (2008) Richner-Hanhart syndrome detected by expanded newborn screening. Pediatr Dermatol 25:378

    Article  PubMed  Google Scholar 

  43. Barr DG, Kirk JM, Laing SC (1991) Outcome in tyrosinaemia type II. Arch Dis Child 66:1249–1250

    Article  PubMed  CAS  Google Scholar 

  44. Chitayat D, Balbul A, Hani V et al. (1992) Hereditary tyrosinaemia type II in a consanguineous Ashkenazi Jewish family: intrafamilial variation in phenotype; absence of parental phenotype effects on the fetus. J Inherit Metab Dis 15:198–203

    Article  PubMed  CAS  Google Scholar 

  45. Francis DE, Kirby DM, Thompson GN (1992) Maternal tyrosinaemia. II. Management and successful outcome. Eur J Pediatr 151:196–199

    Article  PubMed  CAS  Google Scholar 

  46. Ellaway CJ, Holme E, Standing S et al. (2001) Outcome of tyrosinaemia type III. J Inherit Metab Dis 24:824–832

    Article  PubMed  CAS  Google Scholar 

  47. Rüetschi U, Cerone R, Pérez CC et al. (2000) Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinemia type III. Hum Genet 106:654–662

    Article  PubMed  Google Scholar 

  48. Rice DN, Houston IB, Lyon IC et al. (1998) Transient neonatal tyrosinaemia. J Inherit Metab Dis 12:13–22

    Article  Google Scholar 

  49. Mamunes P, Prince PE, Thornton NH et al. (1976) Intellectual deficits after transient tyrosinemia in the term neonate. Pediatrics 57:675–680

    PubMed  CAS  Google Scholar 

  50. Phornphutkul C, Introne WJ, Perry MB et al. (2002) Natural history of alkaptonuria. N Engl J Med 347:2111–2121

    Article  PubMed  CAS  Google Scholar 

  51. Garrod AE (1902) The incidence of alkaptonuria: a study in chemical individuality. Lancet 2:1616–1620

    Article  CAS  Google Scholar 

  52. Murray JC, Lindberg KA, Pinnell SR (1977) In vitro inhibition of chick embryo lysyl oxidase by homogentisic acid. A proposed connective tissue defect in alkaptonuria. J Clin Invest 59:1071–1079

    Article  PubMed  CAS  Google Scholar 

  53. Vilboux T, Kayser M, Introne W et al. (2009) Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. Hum Mutat 30:1611–1619

    Article  PubMed  CAS  Google Scholar 

  54. De Haas V, Carbasius Weber EC et al. (1998) The success of dietary protein restriction of alkaptonuria patients is age- dependent. J Inherit Metab Dis 21:791–798

    Article  PubMed  Google Scholar 

  55. Lustberg TJ, Schulmanm JD, Seegmiller JE (2004) Decreased binding of 14-C homogentisic acid induced by ascorbic acid in connective tissue of rats with experimental alkaptonuria. Nature 228:770–771

    Article  Google Scholar 

  56. Wolff JA, Barshop B, Nyhan W et al. (1989) Effects of ascorbic acid in alkaptonuria: alterations in benzoquinone acetic acid and an ontogenic effect in infancy. Pediatr Res 26:140–144

    Article  PubMed  CAS  Google Scholar 

  57. Introne WJ, Perry MB, Kayser MA et al. (2010) Nitisinone use in alkaptonuria: results of a three year trial (abstract). SIMD Annual Meeting, 27–31 March 2010. Mol Genet Metab 99:187–332

    Article  Google Scholar 

  58. Wilcken B, Hammond J, Howard N et al. (1981) Hawkinsinuria: a dominantly inherited defect of tyrosine metabolism with severe effects in infancy. N Engl J Med 305:865–868

    Article  PubMed  CAS  Google Scholar 

  59. Borden M, Holm J, Leslie J et al. (1992) Hawkinsinuria in two families. Am J Med Genet 44:52–56

    Article  PubMed  CAS  Google Scholar 

  60. Tomoeda K, Awata H, Matsuura T et al. (2000) Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. Mol Genet Metab 71:506–510

    Article  PubMed  CAS  Google Scholar 

  61. Item CB, Mihalek I, Lichtarge O, Jalan A et al. (2007) Manifestation of hawkinsinuria in a patient compound heterozygous for hawkinsinuria and tyrosinemia III. Mol Genet Metab 91:379–383

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chakrapani, A., Gissen, P., McKiernan, P. (2012). Disorders of Tyrosine Metabolism. In: Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15720-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15720-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15719-6

  • Online ISBN: 978-3-642-15720-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics