Skip to main content

Metastable Mineral Reactions

  • Chapter
  • First Online:
  • 908 Accesses

Abstract

Metastable melting and high temperature disequilibrium reaction mechanisms are important processes in pyrometamorphism. Because of kinetic factors such as low diffusion rates, low fluid pressure and short-term heating, reaction textures in pyrometamorphic rocks do not generally achieve thermodynamic equilibrium and disequilibrium mineral assemblages arrested in various stages of up-temperature reaction are typically preserved. It is only with a coarsening of grain size during annealing at high temperatures, that thermodynamic equilibrium is approached during pyrometamorphism. Using light optics, the initial stages of mineral reactions can rarely be resolved because they occur over very small distances and the reaction products are typically extremely fine grained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addison CC, Addison WE, Neal GH, Sharp JH (1962) Amphiboles Part 1. The oxidation of crocidolite. J Chem Soc 1962: 1468–1471

    Article  Google Scholar 

  • Anovitz LM, Essene EJ, Metz GW, Bohlen SR, Westrum FE Jr, Hemingway BS (1993) Heat capacity and phase equilibria of almandine Fe3Al2Si3O12. Geochim Cosmochim Acta 57: 4191–4204

    Article  Google Scholar 

  • Atkin BP (1978) Hercynite as a breakdown product of staurolite from within the aureole of the Andara pluton, Co. Donegal, Eire. Mineral Mag 42: 237–240

    Article  Google Scholar 

  • Barcova K, Mashlan M, Zboril R, Martinec P (2003) Mössbauer study of transformation mechanisms of Fe cations in olivine after thermal treatments in air. J Radioanal Nucl Chem 255: 529–533

    Article  Google Scholar 

  • Barlow SG, Manning DAC, Hill PI (2000) The influence of time and temperature on the reactions and transformations of clinochlore as a ceramic clay mineral. Int Ceram 2: 5–10

    Google Scholar 

  • Bhargava SK, Garh A, Subasinghe ND (2009) In situ high-temperature phase transformation studies on pyrite. Fuel 88: 988–993

    Article  Google Scholar 

  • Brauns R (1912a) Die kristallinen Schiefer des Laacher Seegebeits und ihre Umbilding zu Sanidinit. E. Schweizerbarth’sche Verlagsbuchhandlung, Stuttgart, 1911

    Google Scholar 

  • Brauns R (1912b) Die chemische Zusammensetzung granatführender kristalliner Scheifer, Cordieritgesteine und Sanidinite aus dem Laacher Seegebeit. N Jb Mineral, Geol Pal 34: 85–175

    Google Scholar 

  • Brearley AJ (1986) An electron microprobe study of muscovite breakdown in pelitic xenoliths during pyrometamorphism. Mineral Mag 357: 385–397

    Article  Google Scholar 

  • Brearley AJ (1987a) A natural example of the disequilibrium breakdown of biotite at high temperature: TEM observations and comparison with experimental kinetic data. Mineral Mag 359: 93–106

    Article  Google Scholar 

  • Brearley AJ (1987b) An experimental and kinetic study of the breakdown of aluminous biotite at 800°C: reaction microstructures and mineral chemistry. Bull Mineral 110: 513–532

    Google Scholar 

  • Bryant G, Bailey C, Wu H, McLennan A, Stanmore B, Wall T (1999) Iron in coal and slagging. The significance of the high temperature behavior of siderite grains during combustion. In: Gupta R (ed) Impact of mineral impurities in solid fuel combustion 1999. Kluwer Academic/Plenunm Publishers, New York, NY, pp 581–594

    Google Scholar 

  • Cameron WE (1976a) Coexisting sillimanite and mullite. Geol Mag 6: 497–514

    Article  Google Scholar 

  • Cameron WE (1977) Mullite: a substituted alumina. Am Mineral 62: 747–755

    Google Scholar 

  • Cesare B (1994) Hercynite as the product of staurolite decompression in the contact aureole of Vedrette di Ries, eastern Alps, Italy. Contrib Mineral Petrol 116: 239–246

    Article  Google Scholar 

  • Chernosky JV Jr (1974) The upper stability of clinochlore at low pressure and the free energy of formation of Mg-cordierite. Am Mineral 59: 496–507

    Google Scholar 

  • Chinner GA, Cornell DH (1974) Evidence of kimberlite-grospydite reaction. Contrib Mineral Petrol 45: 153–160

    Article  Google Scholar 

  • Chinner GA, Schairer JF (1962) The join Ca3Al2Si3O12–Mg3Al2Si2O12 and its bearing on the system CaO-MgO-Al2O3-SiO2 at atmospheric pressure. Am J Sci 260: 611–634

    Article  Google Scholar 

  • Cho M, Fawcett JJ (1986) A kinetic study of clinochlore and its high temperature equivalent forsterite-cordierite-spinel at 2 kbar water pressure. Am Mineral 71: 68–77

    Google Scholar 

  • Clocchiatti R (1990) Les fulgurites et roches vitrifiées de l’Etna. Eur J Mineral 2: 479–494

    Google Scholar 

  • Cultrone G, Rodriguez-Navarro C, Sebastian E, Cazalla O, De La Torre MJ (2001) Carbonate and silicate reactions during ceramic firing. Eur J Mineral 13: 621–634

    Article  Google Scholar 

  • Dunn JG, De GC, O’Connor BH (1989) The effect of experimental variables on the mechanism of the oxidation of pyrite. Part 1. Oxidation of particles less than 45 μm in size. Thermochim Acta 145: 115–130

    Article  Google Scholar 

  • Faure F, Trolliard G, Montel J-M, Nicollet C (2001) Nano-petrographic investigation of a mafic xenolith (maar de Beaunit, Massif Central, France). Eur J Mineral 13: 27–40

    Article  Google Scholar 

  • Fawcett JJ, Yoder HS (1966) Phase relations of chlorites in the system MgO-Al2O3-SiO2-H2O. Am Mineral 51: 353–380

    Google Scholar 

  • Fujii T (1976) Solubility of Al2O3 in enstatite coexisting with forsterite and spinel. Carnegie Inst Washington Ann Rpt Div Geophysics Lab 75: 566–571

    Google Scholar 

  • Gaines GL Jr, Vedder W (1964) Dehydroxylation of muscovite. Nature 201: 495

    Article  Google Scholar 

  • Ghose H, Weidner JR (1971) Oriented transformation of grunerite to clinoferrosilite at 775°C and 500 bar argon pressure. Contrib Mineral Petrol 30: 64–71

    Article  Google Scholar 

  • Gotor FJ, Macias M, Ortega A, Criado JM (2000) Comparative stidy of the kinetics of the thermal decomposition of synthetic and natural siderite samples. Phys Chem Minerals 27: 495–503

    Article  Google Scholar 

  • Grant JA (1986) The isocon diagram – a simple solution to Gresen’s equation for metasomatic alteration. Econ Geol 81: 1976–1982

    Article  Google Scholar 

  • Grapes RH (1986) Melting and thermal reconstitution of pelitic xenoliths, Wehr volcano, East Eifel, Germany. J Petrol 27: 343–396

    Article  Google Scholar 

  • Grapes RH (2003) Pyrometamorphic breakdown of cordierite-muscovite intergrowths. Mineral Mag 67: 653–663

    Article  Google Scholar 

  • Grapes RG, Li X-P (2009) Disequilibrium thermal breakdown of staurolite: a natural example. Eur J Mineral 22: 147–157

    Article  Google Scholar 

  • Grieve RAF, Fawcett JJ (1974) The stability of chloritoid below 10 kb PH2O. J Petrol 16: 113–139

    Article  Google Scholar 

  • Gualtieri AF, Gemmi M, Dapiaggi M (2003) Phase transformations and reaction kinetics during the temperature-induced oxidation of natural olivine. Am Mineral 88: 1560–1574

    Google Scholar 

  • Guggenheim S, Chang Y-H, Koster van Groos AF (1987) Muscovite dehydroxylation: high temperature studies. Am Mineral 72: 537–550

    Google Scholar 

  • Guppy EM, Hawkes L (1925) A composite dyke from eastern Iceland. Q J Geol Soc Lond 81: 325–343

    Article  Google Scholar 

  • Haggerty SE, Baker I (1967) Alteration of olivine in basaltic and associated lavas. Part 1: High temperature alteration. Contrib Mineral Petrol 16: 233–257

    Article  Google Scholar 

  • Harlov DE, Newton RC (1993) Reversal of the metastable kyanite + corundum + quartz and andalusite + corundum + quartz equilibria and the enthalpy of formation of kyanite and andalusite. Am Mineral 78: 594–600

    Google Scholar 

  • Holdaway MJ (1971) Stability of andalusite and the aluminium silicate phase diagram. Am J Sci 271: 97–131

    Article  Google Scholar 

  • Holness MB, Isherwood CE (2003) The aureole of the Rum Tertiary igneous complex, Scotland. J Geol Soc Lond 160: 15–27

    Article  Google Scholar 

  • Hsu LC (1968) Selected phase relationships in the system Al-Mg-Fe-Si-O-H: a model for garnet equilibria. J Petrol 71: 40–83

    Article  Google Scholar 

  • Hurst HJ, Levy JH, Patterson JH (1993) Siderite decomposition in retorting atmospheres. Fuel 27: 885–890

    Article  Google Scholar 

  • James RS, Turnock AC, Fawcett JJ (1976) The stability and phase relations of iron chlorite below 8.5 kb PH2O. Contrib Mineral Petrol 56: 1–25

    Article  Google Scholar 

  • Jenkins DM, Chernosky JV Jr (1986) Phase equilibria and crystallochemical properties of Mg-chlorite. Am Mineral 71: 924–936

    Google Scholar 

  • Johannes W (1984) Beginning of melting in the granite system Qz-Or-Ab-An-H2O. Contrib Mineral Petrol 86: 264–273

    Article  Google Scholar 

  • Johannes W (1989) Melting of plagioclase-quartz assemblages at 2 kbar water pressure. Contrib Mineral Petrol 103: 270–276

    Article  Google Scholar 

  • Johannes W, Holz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin

    Book  Google Scholar 

  • Kifle K (1992) High temperature-low pressure, water-saturated disequilibrium melting experiments of quartzofeldspathic rock compositions, Unpub. PhD thesis. Research School of Earth Sciences, Victoria University of Wellington, New Zealand

    Google Scholar 

  • Koltermann M (1962) Der Thermische Zerfall fayalithaltinger Olivine bei hohen Temperaturen, N Jb Mineral Mh, 181–191

    Google Scholar 

  • Lacroix A (1893) Les enclaves des roches volcaniques. Protat, Mâcon

    Google Scholar 

  • Le Maitre RW (1974) Partial fused granite blocks from Mt. Elephant, Victoria, Australia. J Petrol 15: 403–412

    Article  Google Scholar 

  • Longhi J, Bertka CM (1996) Graphical analysis of pigeonite-augite liquidus equilibria. Am Mineral 81: 685–695

    Google Scholar 

  • Loomis TP (1972) Contact metamorphism of pelitic rock by the Ronda ultramafic intrusion, southern Spain. Geol Soc Am Bull 83: 2449–2479

    Article  Google Scholar 

  • Macdonald GA, Katsura T (1965) Eruption of Lassen Peak, Cascade Range, California, in 1915: example of mixed magmas. Geol Soc Am Bull 76: 475–482

    Article  Google Scholar 

  • Markl G (2005) Mullite-corundum-spinel-cordierite-plagioclase xenoliths in the Skaergaard Marginal Border group: multi-stage interaction between metasediments and basaltic magma. Contrib Mineral Petrol 149: 196–215

    Article  Google Scholar 

  • McLennan AR, Bryant GW, Stanmore BR, Wall TF (2000) Ash formation mechanisms during combustion in reducing conditions. Energy Fuels 14: 150–159

    Article  Google Scholar 

  • McOne AW, Fawcett JJ, James RS (1975) The stability of intermediate chlorites of the clinochlore-daphnite series at 2 kbar PH2O. Am Mineral 60: 1047–1062

    Google Scholar 

  • Nelson BW, Roy R (1958) Synthesis of the chlorites and their structural and chemical constitutions. Am Mineral 43: 707–725

    Google Scholar 

  • Ostapenko GT, Gorogotskaya LI, Timoshkova LP, Kuts VA (1999) On decomposition of kyanite and andalusite at temperatures above 800°C and elevated water pressure. (Abs). Khitariada-99: 66

    Google Scholar 

  • Patterson JH, Corcoran JF, Kinealy KM (1994) Chemistry and mineralogy of carbonates in Australian bituminous and subbituminous coals. Fuel 73: 1735–1745

    Article  Google Scholar 

  • Patterson JH, Hurst HJ, Levy JH (1991) Relevance of carbonate minerals in the processing of Australian Tertiary oild shale. Fuel 70: 1252–1259

    Article  Google Scholar 

  • Pattison DRM, Spear FS, Debuhr CL, Cheney JT, Guidotti CV (2002) Thermodynamic modeling of the reaction muscovite + cordierite = Al2SiO5 + biotite + quartz + H2O: constraints from natural assemblages and implications for the metapelitic petrogenetic grid. J Metamor Geol 20: 99–118

    Article  Google Scholar 

  • Pelovski Y, Petkova V (1999) Investigation on thermal decomposition of pyrite. Part 1. J Thermal Anal Calorim 56: 95–99

    Article  Google Scholar 

  • Putnis A, McConnell JDC (1980) Principles of mineral behaviour. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Richardson SW (1968) Staurolite stability in part of the system Fe-Al-Si-O-H. J Petrol 9: 467–488

    Article  Google Scholar 

  • Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminium silicate triple point. Am J Sci 267: 259–272

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol Surv Bull 2131

    Google Scholar 

  • Roy DM, Roy R (1955) Synthesis and stability of minerals in the system MgO-Al2O3-SiO2-H2O. Am Mineral 40: 147–178

    Google Scholar 

  • Rubie DC (1998) Disequilibrium during metmamorphism: the role of nucleation kinetics. In: Treloar PJ, O’Brian PJ (eds) What drives metamorphism and metamorphic reactions?. Geol Soc Lond Spec Pub, 138: 199–214

    Google Scholar 

  • Rubie DC, Brearley AJ (1987) Metastable melting during the breakdown of muscovite + quartz at1 kbar. Bull Mineral 110: 533–549

    Google Scholar 

  • Rubie DM, Brearley AJ (1990) A model for rates of disequilibrium melting during metamorphism. In: Ashworth JR, Brown M (eds) High-temperature metamorphism and crustal anatexis. Unwin Hyman, London, pp 57–86

    Chapter  Google Scholar 

  • Sanchez-Navas A (1999) Sequential kinetics of a muscovite-out reaction: a natural example. Am Mineral 84: 1270–1286

    Google Scholar 

  • Sanchez-Navas A, Galindo-Zaldivar J (1993) Alteration and deformation microstructures of biotite from plagioclase-rich dykes (Ronda Massif, S. Spain). Eur J Mineral 5: 245–256

    Google Scholar 

  • Sassi R, Mazzoli C, Spiess R, Cester T (2004) Towards a better understanding of the fibrolite problem: the effect of reaction overstepping and surface energy anisotropy. J Petrol 45: 1467–1479

    Article  Google Scholar 

  • Schairer JF, Yagi K (1952) The system FeO-Al2O3-SiO2. Am J Sci Bowen 471–512

    Google Scholar 

  • Schairer JF, Yoder HS (1967) The nature of residual liquids from crystallization, with data on the system nepheline-diopside-silica. Am J Sci 258A: 273–283

    Google Scholar 

  • Shaw HR (1963) The four-phase curve sanidine-quartz-liquid-gas between 500 and 4000 bars. Am Mineral 48: 883–896

    Google Scholar 

  • Sigurdsson H (1971) Feldspar relations in a composite magma. Lithos 4: 231–238

    Article  Google Scholar 

  • Sokol EV, Novilkov IS, Zateeva S, Vapnik Ye, Shagam R, Kozmenko O (2010) Combustion metamorphism in the Nabi Musa dome: new implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Res doi: 10.1111/j.1365–2117.2010.00462.x

    Google Scholar 

  • Switzer G, Melson WG (1969) Partially melted kyanite eclogite from the Roberts Victor Mine, South Africa. Smithsonian Contrib Earth Sci 1: 1–9

    Article  Google Scholar 

  • Téqui C, Robie RA, Hemingway BS, Neuville DR, Richet P (1991) Melting and thermodynamic properties of pyrope (Mg3Al2Si3O12). Geochim Cosmochim Acta 55: 1005–1010

    Article  Google Scholar 

  • Thiébot L, Roux J, Richet P (1998) High-temperature thermal expansion and decomposition of garnets. Eur J Mineral 10: 7–15

    Google Scholar 

  • Tsuchiyama A, Takahashi E (1983) Melting kinetics of plagioclase feldspar. Contrib Mineral Petrol 84: 345–354

    Article  Google Scholar 

  • Turnock AC (1960) The stability of iron chlorites. Carnegie Inst Washington Yb 59: 98–103

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi2O8-KAlSi2O8-SiO2-H2O. Geol Soc Am Mem 74

    Google Scholar 

  • Vedder W, Wilkins RWT (1969) Dehydroxylation and rehydroxylation, oxidation and reduction of micas. Am Mineral 54: 482–509

    Google Scholar 

  • Viti C, Mellini M, Di Vincenzo G (2003) Nanotextures of laser-heated biotites. Ninth International Symposium on Experimental Mineralogy, Petrology and Geochemistry (Abs).

    Google Scholar 

  • Worden RH, Champness PE, Droop GTR (1987) Transmission electron microscopy of the pyrometamorphic breakdown of phengite and chlorite. Mineral Mag 359: 107–122

    Article  Google Scholar 

  • Xu H, Veblen DR, Luo G, Xue J (1996) Transmission electron microscopy study of the thermal decomposition of tremolite into clinopyroxene. Am Mineral 81: 1126–1132

    Google Scholar 

  • Yoder HS (1952) The MgO-Al2O3-SiO2-H2O system and the related metamorphic facies. Am J Sci Bowen 569–627

    Google Scholar 

  • Zang Q, Enami M, Suwa K (1993) Aluminium orthopyroxene in pyrometamorphosed garnet megacrysts from Liaoning and Shandong provinces, northeast China. Eur J Mineral 5: 153–164

    Google Scholar 

  • Zateeva SN, Sokol EV, Sharygin VV (2007) Specificity of pyrometamorphic minerals of the ellestadite group. Geol Ore Deposits 49: 792–805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney Grapes .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grapes, R. (2010). Metastable Mineral Reactions. In: Pyrometamorphism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15588-8_7

Download citation

Publish with us

Policies and ethics