Skip to main content

Ecology of Populations and Vegetation

  • Reference work entry

Abstract

This chapter deals with the development and composition of vegetation. Plant communities at a certain site are ultimately the result of complicated interactions of geological and later historical processes with the abiotic environment (climate and original substrate; see Chaps. 11 and 12) but cannot be understood without knowing the intrinsic conversion processes and the influence of disturbances (Fig. 13.1). Various levels of complexity affect each other:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brown JH, Lomolino MV (1998) Biogeography. Sinauer Associates, Sunderland

    Google Scholar 

  • de Witte LC, Armbruster GFJ, Gielly L, Taberlet P, Stocklin J (2012) AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species. Mol Ecol 21:1081–1097

    Article  PubMed  Google Scholar 

  • de Vries DM (1953) Objective combinations of species. Acta Bot Neerlandica 1:497–499

    Article  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, Stuttgart

    Google Scholar 

  • Gause FG (1934) The struggle for existence. Williams & Wilkins, Baltimore

    Book  Google Scholar 

  • Gjaerevoll O (1990) Alpine plants. The Royal Norwegian Society of Sciences and Tapir Publishers, Trondheim

    Google Scholar 

  • Grace JB, Anderson TM, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007) Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–689

    Article  PubMed  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Naturalist 111:1169–1194

    Article  Google Scholar 

  • Grime JP (2002) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester

    Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology, 2nd edn. Unwin Hyman, London

    Google Scholar 

  • Harper JL, Ogden J (1970) Reproductive strategy of higher plants. 1. Concept of strategy with special reference to Senecio vulgaris. J Ecol 58:681–998

    Article  Google Scholar 

  • Hector A et al (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Hubbell S (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Huston M (1993) Biological diversity, soils, and economics. Science 262:1676–1680

    Article  PubMed  CAS  Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Iwasa Y, Sato K, Kakita M, Kubo T (1993) Modelling biodiversity: latitudinal gradient of forest species diversity. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Ecol Studies 99:433–451. Springer, Berlin

    Google Scholar 

  • Jäger EJ (1981–1982) Wuchsform und Lebensgeschichte der Gefässpflanzen. Universitäts- und Landesbibliothek Sachsen-Anhalt, Halle (Saale)

    Google Scholar 

  • Kahmen A, Perner J, Audorff V, Weisser W, Buchmann N (2005) Effects of plant diversity, community composition and environmental parameters on productivity in montane European grasslands. Oecologia 142:606–615

    Article  PubMed  Google Scholar 

  • Kira T (1978) Primary production of forests. In: Photosynthesis and productivity in different environments. Int Biol Progr 3:5–39. Cambridge University Press

    Google Scholar 

  • Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jpn J Ecol 17:70–87

    Google Scholar 

  • Knapp R (1971) Einführung in die Pflanzensoziologie. Ulmer, Stuttgart

    Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Levins R (1970) Extinction. In: Gesternhaber M (ed) Some mathematical problems in biology. American Mathematical Society, Providence, pp 77–107

    Google Scholar 

  • McArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Meusel H, Jäger E, Weinert E (1965–1992) Vergleichende Chorologie der zentraleuropäischen Flora. Fischer, Jena

    Google Scholar 

  • Moor M (1958) Pflanzengesellschaften schweizerischer Flussauen. Mitt Schweiz Anst Forstl Verswes 34:221–360

    Google Scholar 

  • Pretzsch H (2002) A unified law of spatial allometry for woody and herbaceous plants. Plant Biol 4:159–166

    Article  Google Scholar 

  • Rabotnov TA (1978) Structure and method of studying coenotic populations of perennial herbaceous plants. Sov J Ecol 9:99–105

    Google Scholar 

  • Rosenzweig ML (2003) How to reject the area hypothesis of latitudinal gradients. In: Blackburn TM, Gaston KJ (eds) Macroecology: concepts and consequences. Blackwell, Oxford, UK, pp 87–106

    Google Scholar 

  • Roy J (2001) How does biodiversity control primary productivity? In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic, San Diego, pp 169–186

    Chapter  Google Scholar 

  • Sarukhan J (1974) Studies on plant demography – Ranunculus repens L, Ranunculus bulbosus L and Ranunculus acris L. 2. Reproductive strategies and seed population-dynamics. J Ecol 62:151–177

    Article  Google Scholar 

  • Schmid B (2002) The species richness-productivity controversy. Trends Ecol Evol 17:113–114

    Article  Google Scholar 

  • Schmid B (2003) Biodiversität – Die funktionelle Bedeutung der Artenvielfalt. Biologie in unserer Zeit 6:356–365

    Article  Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Article  Google Scholar 

  • Silvertown J (2007) Introduction to plant population biology, 4th edn. Blackwell Science, Oxford

    Google Scholar 

  • Spehn EM, Joshi J, Schmid B, Diemer M, Körner C (2000) Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Funct Ecol 14:326–337

    Article  Google Scholar 

  • Van Steenis JCGG (1971) Nothofagus, key genus of plant geography, in time and space, living and fossil, ecology and phylogeny. Blumea 19:65–98

    Google Scholar 

  • Steinhauser F (1970) Climatic atlas of Europe. 1: Maps of mean temperature and precipitation. World Meteorological Organization (WMO), United Nations Educational, Scientific and Cultural Organization (UNESCO), Cartographia, Hungary

    Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  PubMed  CAS  Google Scholar 

  • Tralau H (1967) The phytogeographic evolution of the genus Ginkgo L. Botaniska Notiser 120:409–422

    Google Scholar 

  • Walther GR, Berger S, Sykes MT (2005) An ecological “footprint” of climate change. Proc R Soc B 272:1427–1432

    Article  PubMed  Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5:360–364

    Article  PubMed  CAS  Google Scholar 

  • Weiner J, Griepentrog H-W, Kristensen L (2001) Suppression of weeds by spring wheat Triticum aestivum increases with crop density and spatial uniformity. J Appl Ecol 38:784–790

    Article  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems, 2nd edn. MacMillan, New York

    Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644

    Article  PubMed  Google Scholar 

  • Zukrigl K, Eckhardt G, Nather J (1963) Standortskundliche und waldbauliche Untersuchungen in Urwaldresten der niederösterreichischen Kalkalpen. Mitt Forstl Bundesversuchsanst 61, Wien

    Google Scholar 

Further Reading

  • Cox CB, Moore PD (2005) Biogeography. An ecological and evolutionary approach. Blackwell, Oxford

    Google Scholar 

  • Fenner M (1985) Seed ecology. Chapman & Hall, London/New York

    Book  Google Scholar 

  • Gibson DJ (2002) Methods in comparative plant population ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hastings A (1997) Population biology. Concepts and models. Springer, New York

    Book  Google Scholar 

  • Keddy PA (2001) Competition, 2nd edn. Kluwer, Dordrecht

    Book  Google Scholar 

  • Silvertown JW, Charlesworth D (2001) Introduction to plant population biology, 4th edn. Blackwell, Oxford

    Google Scholar 

  • Whittaker RJ, Fernàndez-Palacios JM (2007) Island biogeography. Ecology, evolution and conservation, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Körner, C. (2013). Ecology of Populations and Vegetation. In: Strasburger's Plant Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15518-5_13

Download citation

Publish with us

Policies and ethics