Skip to main content

Computer Simulations of Nanometer-Scale Indentation and Friction

  • Chapter
  • First Online:

Abstract

Engines and other machines with moving parts are often limited in their design and operational lifetime by friction and wear. This limitation has motivated the study of fundamental tribological processes with the ultimate aim of controlling and minimizing their impact. The recent development of miniature apparatus, such as microelectromechanical system (MEMS) microelectromechanical systems (MEMS) and nanometer-scale device nanometer-scale devices, has increased interest in atomic-scale friction atomic-scale friction, which has been found to, in some cases, be due to mechanisms that are distinct from the mechanisms that dominate in macroscale friction.

Presented in this chapter is a review of computational study tribological process computational studies of tribological processes at the atomic and nanometer nanometer scale. In particular, a review of the findings of computational studies of nanometer-scale indentation nanometer-scale indentation, nanometer-scale friction friction and lubrication nanometer-scale lubrication is presented, along with a review of the salient computational methods that are used in these studies, and the conditions under which they are best applied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Dowson. History of Tribology (Longman, London, 1979).

    Google Scholar 

  2. K.L. Johnson, K. Kendell, A.D. Roberts: Surface energy and the contact of elastic solids, Proc. R. Soc. Lond. A 324, 301–313 (1971).

    Article  Google Scholar 

  3. M. Gad-el-Hak (ed.): The MEMS Handbook, Mech. Eng. Handbook (CRC, Boca Raton, 2002).

    MATH  Google Scholar 

  4. J. Krim: Friction at the atomic scale, Sci. Am. 275, 74–80 (1996).

    Article  Google Scholar 

  5. J. Krim: Atomic-scale origins of friction, Langmuir 12, 4564–4566 (1996).

    Article  Google Scholar 

  6. J. Krim: Progress in nanotribology: Experimental probes of atomic-scale friction, Comments Condens. Matter Phys. 17, 263–280 (1995).

    Google Scholar 

  7. A.P. Sutton: Deformation mechanisms, electronic conductance and friction of metallic nanocontacts, Curr. Opin. Solid State Mater. Sci. 1, 827–833 (1996).

    Article  Google Scholar 

  8. C.M. Mate: Force microscopy studies of the molecular origins of friction and lubrication. IBM J. Res. Dev. 39, 617–627 (1995).

    Article  Google Scholar 

  9. A.M. Stoneham, M.M.D. Ramos, A.P. Sutton: How do they stick together – The statics and dynamics of interfaces. Philos. Mag. A 67, 797–811 (1993).

    Article  Google Scholar 

  10. I.L. Singer: Friction and energy dissipation at the atomic scale: A review. J. Vac. Sci. Technol. A 12, 2605–2616 (1994).

    Article  Google Scholar 

  11. B. Bhushan. J.N. Israelachvili, U. Landman: Nanotribology – Friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995).

    Article  Google Scholar 

  12. J.A. Harrison, D.W. Brenner: Atomic-scale simulation of tribological and related phenomena, in, Handbook of Micro/Nanotechnology, ed. by B. Bhushan (CRC, Boca Raton, 1995) pp. 397–439.

    Google Scholar 

  13. J.B. Sokoloff: Theory of atomic level sliding friction between ideal crystal interfaces. J. Appl. Phys. 72, 1262–1270 (1992).

    Article  Google Scholar 

  14. W. Zhong, G. Overney, D. Tomanek: Theory of atomic force microscopy on elastic surfaces, in, The Structure of Surfaces III: Proc. 3rd Int. Conf. Struct. Surf., Vol. 24, ed. by S.Y. Tong, M.A.V. Hove, X. Xide, K. Takayanagi (Springer, Berlin, Heidelberg, 1991) pp. 243–.

    Google Scholar 

  15. J.N. Israelachvili: Adhesion, friction and lubrication of molecularly smooth surfaces, in, Fundamentals of Friction: Macroscopic and Microscopic processes, ed. by I.L. Singer, H.M. Pollock (Kluwer, Dordrecht, 1992) pp. 351–385.

    Chapter  Google Scholar 

  16. S.B. Sinnott: Theory of atomic-scale friction, in, Handbook of Nanostructured Materials and Nanotechnology, vol. 2, ed. by H. Nalwa (Academic, San Diego, 2000) pp. 571–618.

    Chapter  Google Scholar 

  17. S.-J. Heo, S.B. Sinnott, D.W. Brenner. J.A. Harrison: Computational modeling of nanometer-scale tribology, in, Nanotribology and Nanomechanics, ed. by B. Bhushan (Springer, Berlin, Heidelberg, 2005).

    Google Scholar 

  18. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  Google Scholar 

  19. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987).

    Article  Google Scholar 

  20. G.J. Germann, S.R. Cohen, G. Neubauer, G.M. McClelland, H. Seki, D. Coulman: Atomic-scale friction of a diamond tip on diamond (100) surface and (111) surface. J. Appl. Phys. 73, 163–167 (1993).

    Article  Google Scholar 

  21. R.W. Carpick, M. Salmeron: Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997).

    Article  Google Scholar 

  22. J.N. Israelachvili: Intermolecular and surface forces: With applications to colloidal and biological systems (Academic, London, 1992).

    Google Scholar 

  23. J. Krim, D.H. Solina, R. Chiarello: Nanotribology of a Kr monolayer – A quartz crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 66, 181–184 (1991).

    Article  Google Scholar 

  24. G.A. Tomlinson: A molecular theory of friction. Philos. Mag. 7, 905–939 (1929).

    Google Scholar 

  25. F.C. Frenkel, T. Kontorova: On the theory of plastic deformation and twinning. Zh. Eksp. Teor. Fiz. 8, 1340 (1938).

    MATH  Google Scholar 

  26. G.M. McClelland. J.N. Glosli: Friction at the atomic scale, in, Fundamentals of friction: Macroscopic and microscopic processes, ed. by I.L. Singer, H.M. Pollock (Kluwer, Dordrecht, 1992) pp. 405–422.

    Chapter  Google Scholar 

  27. J.B. Sokoloff: Theory of dynamical friction between idealized sliding surfaces. Surf. Sci. 144, 267–272 (1984).

    Article  Google Scholar 

  28. J.B. Sokoloff: Theory of energy dissipation in sliding crystal surfaces. Phys. Rev. B 42, 760–765 (1990).

    Article  Google Scholar 

  29. J.B. Sokoloff: Possible nearly frictionless sliding for mesoscopic solids. Phys. Rev. Lett. 71, 3450–3453 (1993).

    Article  Google Scholar 

  30. J.B. Sokoloff: Microscopic mechanisms for kinetic friction: Nearly frictionless sliding for small solids. Phys. Rev. B 52, 7205–7214 (1995).

    Article  Google Scholar 

  31. J.B. Sokoloff: Theory of electron and phonon contributions to sliding friction, in, Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti (Kluwer, Dordrecht, 1996) pp. 217–229.

    Chapter  Google Scholar 

  32. J.B. Sokoloff: Static friction between elastic solids due to random asperities. Phys. Rev. Lett. 86, 3312–3315 (2001).

    Article  Google Scholar 

  33. J.B. Sokoloff: Possible microscopic explanation of the virtually universal occurrence of static friction. Phys. Rev. B 65, 115415 (2002).

    Article  MathSciNet  Google Scholar 

  34. B.N.J. Persson, D. Schumacher, A. Otto: Surface resistivity and vibrational damping in adsorbed layers. Chem. Phys. Lett. 178, 204–212 (1991).

    Article  Google Scholar 

  35. A.I. Volokitin, B.N.J. Persson: Resonant photon tunneling enhancement of the van der Waals friction. Phys. Rev. Lett. 91, 106101 (2003).

    Article  Google Scholar 

  36. A.I. Volokitin, B.N.J. Persson: Noncontact friction between nanostructures. Phys. Rev. B 68, 155420 (2003).

    Article  Google Scholar 

  37. A.I. Volokitin, B.N.J. Persson: Adsorbate-induced enhancement of electrostatic noncontact friction. Phys. Rev. Lett. 94, 086104 (2005).

    Article  Google Scholar 

  38. J.S. Helman, W. Baltensperger. J.A. Holyst: Simple model for dry friction. Phys. Rev. B 49, 3831–3838 (1994).

    Article  Google Scholar 

  39. T. Kawaguchi, H. Matsukawa: Dynamical frictional phenomena in an incommensurate two-chain model. Phys. Rev. B 56, 13932–13942 (1997).

    Article  Google Scholar 

  40. M.H. Müser: Nature of mechanical instabilities and their effect on kinetic friction. Phys. Rev. Lett. 89, 224301 (2002).

    Article  Google Scholar 

  41. M.H. Müser: Towards an atomistic understanding of solid friction by computer simulations. Comput. Phys. Commun. 146, 54–62 (2002).

    Article  MATH  Google Scholar 

  42. P. Reimann, M. Evstigneev: Nonmonotonic velocity dependence of atomic friction. Phys. Rev. Lett. 93, 230802 (2004).

    Article  Google Scholar 

  43. C. Ritter, M. Heyde, B. Stegemann, K. Rademann, U.D. Schwarz: Contact area dependence of frictional forces: Moving adsorbed antimony nanoparticles. Phys. Rev. B 71, 085405 (2005).

    Article  Google Scholar 

  44. C. Fusco, A. Fasolino: Velocity dependence of atomic-scale friction: A comparative study of the one- and two-dimensional Tomlinson model. Phys. Rev. B 71, 045413 (2005).

    Article  Google Scholar 

  45. C.W. Gear: Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, 1971).

    MATH  Google Scholar 

  46. W.G. Hoover: Molecular Dynamics (Springer, Berlin, Heidelberg, 1986).

    Google Scholar 

  47. D.W. Heermann: Computer Simulation Methods in Theoretical Physics (Springer, Berlin, Heidelberg, 1986).

    Book  Google Scholar 

  48. M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    MATH  Google Scholar 

  49. J.M. Haile: Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1992).

    Google Scholar 

  50. M. Finnis: Interatomic Forces in Condensed Matter (Oxford Univ. Press, Oxford, 2003).

    Book  Google Scholar 

  51. D.W. Brenner: Relationship between the embedded-atom method and Tersoff potentials. Phys. Rev. Lett. 63, 1022–1022 (1989).

    Article  Google Scholar 

  52. D.W. Brenner: The art and science of an analytic potential. Phys. Status Solidi (b) 217, 23–40 (2000).

    Article  Google Scholar 

  53. R.G. Parr, W. Yang: Density Functional Theory of Atoms and Molecules (Oxford University. Press, New York, 1989).

    Google Scholar 

  54. R. Car, M. Parrinello: Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  Google Scholar 

  55. C. Cramer: Essentials of Computational Chemistry, Theories and Models (Wiley, Chichester, 2004).

    Google Scholar 

  56. A.P. Sutton: Electronic Structure of Materials (Clarendon, Oxford, 1993).

    Google Scholar 

  57. K. Kadau, T.C. Germann, P.S. Lomdahl: Large-scale molecular dynamics simulation of 19 billion particles. Int. J. Mod. Phys. C 15, 193–201 (2004).

    Article  Google Scholar 

  58. B.J. Thijsse: Relationship between the modified embedded-atom method and Stillinger–Weber potentials in calculating the structure of silicon. Phys. Rev. B 65, 195207 (2002).

    Article  Google Scholar 

  59. M.I. Baskes. J.S. Nelson, A.F. Wright: Semiempirical modified embedded atom potentials for silicon and germanium. Phys. Rev. B 40, 6085–6100 (1989).

    Article  Google Scholar 

  60. T. Ohira, Y. Inoue, K. Murata. J. Murayama: Magnetite scale cluster adhesion on metal oxide surfaces: Atomistic simulation study. Appl. Surf. Sci. 171, 175–188 (2001).

    Article  Google Scholar 

  61. F.H. Streitz. J.W. Mintmire: Electrostatic potentials for metal oxide surfaces and interfaces. Phys. Rev. B 50, 11996–12003 (1994).

    Article  Google Scholar 

  62. A. Yasukawa: Using an extended Tersoff interatomic potential to analyze the static fatigue strength of SiO2 under atmospheric influence. JSME Int. J. A 39, 313–320 (1996).

    Google Scholar 

  63. T. Iwasaki, H. Miura: Molecular dynamics analysis of adhesion strength of interfaces between thin films. J. Mater. Res. 16, 1789–1794 (2001).

    Article  Google Scholar 

  64. B.-J. Lee, M.I. Baskes: Second nearest-neighbor modified embedded-atom method potential. Phys. Rev. B 62, 8564–8567 (2000).

    Article  Google Scholar 

  65. G.C. Abell: Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31, 6184–6196 (1985).

    Article  Google Scholar 

  66. J. Tersoff: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988).

    Article  Google Scholar 

  67. J. Tersoff: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566–5569 (1989).

    Article  Google Scholar 

  68. D.W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990).

    Article  Google Scholar 

  69. D.W. Brenner, O.A. Shenderova. J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott: Second generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. C 14, 783–802 (2002).

    Google Scholar 

  70. A.J. Dyson, P.V. Smith: Extension of the Brenner empirical interactomic potential to C-Si-H. Surf. Sci. 355, 140–150 (1996).

    Article  Google Scholar 

  71. B. Ni, K.-H. Lee, S.B. Sinnott: Development of a reactive empirical bond order potential for hydrocarbon-oxygen interactions. J. Phys. C 16, 7261–7275 (2004).

    Google Scholar 

  72. J. Tanaka, C.F. Abrams, D.B. Graves: New C-F interatomic potential for molecular dynamics simulation of fluorocarbon film formation. Nucl. Instrum. Methods B 18, 938–945 (2000).

    Google Scholar 

  73. I. Jang, S.B. Sinnott: Molecular dynamics simulations of the chemical modification of polystyrene through C x F y + beam deposition. J. Phys. Chem. B 108, 9656–9664 (2004).

    Article  Google Scholar 

  74. J.D. Schall, G. Gao. J.A. Harrison: Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential. Phys. Rev. B 77(11), 115209 (2008).

    Article  Google Scholar 

  75. Y. Hu: Personal communication (2008).

    Google Scholar 

  76. S.B. Sinnott, O.A. Shenderova, C.T. White, D.W. Brenner: Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon 36, 1–9 (1998).

    Article  Google Scholar 

  77. S.J. Stuart, A.B. Tutein. J.A. Harrison: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000).

    Article  Google Scholar 

  78. F.H. Stillinger, T.A. Weber: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985).

    Article  Google Scholar 

  79. S.M. Foiles: Application of the embedded-atom method to liquid transition metals. Phys. Rev. B 32, 3409–3415 (1985).

    Article  Google Scholar 

  80. M.S. Daw, M.I. Baskes: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285–1288 (1983).

    Article  Google Scholar 

  81. T.J. Raeker, A.E. Depristo: Theory of chemical bonding based on the atom-homogeneous electron gas system. Int. Rev. Phys. Chem. 10, 1–54 (1991).

    Article  Google Scholar 

  82. R.W. Smith, G.S. Was: Application of molecular dynamics to the study of hydrogen embrittlement in Ni–Cr–Fe alloys. Phys. Rev. B 40, 10322–10336 (1989).

    Article  Google Scholar 

  83. R. Pasianot, D. Farkas, E.J. Savino: Empirical many-body interatomic potential for bcc transition metals. Phys. Rev. B 43, 6952–6961 (1991).

    Article  Google Scholar 

  84. R. Pasianot, E.J. Savino: Embedded-atom method interatomic potentials for hcp metals. Phys. Rev. B 45, 12704–12710 (1992).

    Article  Google Scholar 

  85. M.I. Baskes. J.S. Nelson, A.F. Wright: Semiempirical modified embedded-atom potentials for silicon and germanium. Phys. Rev. B 40, 6085–6100 (1989).

    Article  Google Scholar 

  86. M.I. Baskes: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727–2742 (1992).

    Article  Google Scholar 

  87. K. Ohno, K. Esfarjani, Y. Kawazoe: Computational Materials Science from ab initio to Monte Carlo Methods (Springer, Berlin, Heidelberg, 1999).

    Google Scholar 

  88. A.K. Rappe, W.A. Goddard III: Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).

    Article  Google Scholar 

  89. D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego 1996).

    MATH  Google Scholar 

  90. L.V. Woodcock: Isothermal molecular dynamics calculations for liquid salts. Chem. Phys. Lett. 10, 257–261 (1971).

    Article  Google Scholar 

  91. T. Schneider, E. Stoll: Molecular dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978).

    Article  Google Scholar 

  92. K. Kremer, G.S. Grest: Dynamics of entangled linear polymer melts – A molecular dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990).

    Article  Google Scholar 

  93. S.A. Adelman. J.D. Doll: Generalized Langevin equation approach for atom-solid-surface scattering – General formulation for classical scattering off harmonic solids. J. Chem. Phys. 64, 2375–2388 (1976).

    Article  Google Scholar 

  94. S.A. Adelman: Generalized Langevin equations and many-body problems in chemical dynamics. Adv. Chem. Phys. 44, 143–253 (1980).

    Article  Google Scholar 

  95. J.C. Tully: Dynamics of gas-surface interactions – 3-D generalized Langevin model applied to fcc and bcc surfaces. J. Chem. Phys. 73, 1975–1985 (1980).

    Article  Google Scholar 

  96. S. Nosé: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  97. S. Nosé: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Article  Google Scholar 

  98. G.J. Martyna, M.L. Klein, M. Tuckerman: Nosé–Hoover chains – The canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992).

    Article  Google Scholar 

  99. M. D’Alessandro, M. D’Abramo, G. Brancato, A. Di Nola, A. Amadei: Statistical mechanics and thermodynamics of simulated ionic solutions. J. Phys. Chem. B 106, 11843–11848 (2002).

    Article  Google Scholar 

  100. J.D. Schall, C.W. Padgett, D.W. Brenner: Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations. Mol. Simul. 31, 283–288 (2005).

    Article  Google Scholar 

  101. C.W. Padgett, D.W. Brenner: A continuum-atomistic method for incorporating Joule heating into classical molecular dynamics simulations. Mol. Simul. 31(11), 749–757 (2005).

    Article  Google Scholar 

  102. M. Schoen, C.L. Rhykerd, D.J. Diestler. J.H. Cushman: Shear forces in molecularly thin films. Science 245, 1223–1225 (1989).

    Article  Google Scholar 

  103. J.E. Curry, F.S. Zhang. J.H. Cushman, M. Schoen, D.J. Diestler: Transient coexisting nanophases in ultrathin films confined between corrugated walls. J. Chem. Phys. 101, 10824–10832 (1994).

    Article  Google Scholar 

  104. D.J. Adams: Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid. Mol. Phys. 29, 307–311 (1975).

    Article  Google Scholar 

  105. R.J. Colton, N.A. Burnham: Force microscopy. In: Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques, and Applications, ed. by D.A. Bonnell (VCH, New York, 1993) pp. 191–249.

    Google Scholar 

  106. E. Meyer: Nanoscience: Friction and Rheology on the Nanometer Scale (World Scientific, Hackensack, 1998).

    Book  Google Scholar 

  107. G.E. Totten, H. Liang: Mechanical Tribology: Materials Characterization and Applications (Marcel Dekker, New York, 2004).

    Google Scholar 

  108. N.A. Burnham, R.J. Colton: Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol. A 7, 2906–2913 (1989).

    Article  Google Scholar 

  109. N.A. Burnham, D.D. Dominguez, R.L. Mowery, R.J. Colton: Probing the surface forces of monolayer films with an atomic force microscope. Phys. Rev. Lett. 64, 1931–1934 (1990).

    Article  Google Scholar 

  110. E. Meyer, R. Overney, D. Brodbeck, L. Howald, R. Luthi. J. Frommer, H.J. Guntherodt: Friction and wear of Langmuir–Blodgett films observed by friction force microscopy. Phys. Rev. Lett. 69, 1777–1780 (1992).

    Article  Google Scholar 

  111. A.P. Sutton. J.B. Pethica, H. Rafii-Tabar. J.A. Nieminen: Mechanical properties of metals at the nanometer scale. In: Electron Theory in Alloy Design, ed. by D.G. Pettifor, A.H. Cottrell (Institute of Materials, London, 1992) pp. 191–233.

    Google Scholar 

  112. H. Raffi-Tabar, A.P. Sutton: Long-range Finnis–Sinclair potentials for fcc metallic alloys. Philos. Mag. Lett. 63, 217–224 (1991).

    Article  Google Scholar 

  113. U. Landman, W.D. Luedtke, E.M. Ringer: Atomistic mechanisms of adhesive contact formation and interfacial processes, Wear 153, 3–30 (1992).

    Article  Google Scholar 

  114. U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton: Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture, Science 248, 454–461 (1990).

    Article  Google Scholar 

  115. O. Tomagnini, F. Ercolessi, E. Tosatti: Microscopic interaction between a gold tip and a Pb(110) surface, Surf. Sci. 287/288, 1041–1045 (1991).

    Article  Google Scholar 

  116. N. Ohmae: Field ion microscopy of microdeformation induced by metallic contacts, Philos. Mag. A 74, 1319–1327 (1996).

    Article  Google Scholar 

  117. N.A. Burnham, R.J. Colton, H.M. Pollock: Interpretation of force curves in force microscopy, Nanotechnology 4, 64–80 (1993).

    Article  Google Scholar 

  118. N. Agrait, G. Rubio, S. Vieira: Plastic deformation in nanometer-scale contacts, Langmuir 12, 4505–4509 (1996).

    Article  Google Scholar 

  119. U. Landman, W.D. Luedtke, A. Nitzan: Dynamics of tip-substrate interactions in atomic force microscopy, Surf. Sci. 210, L177–L182 (1989).

    Article  Google Scholar 

  120. U. Landman, W.D. Luedtke: Nanomechanics and dynamics of tip substrate interactions. J. Vac. Sci. Technol. B 9, 414–423 (1991).

    Article  Google Scholar 

  121. U. Landman, W.D. Luedtke. J. Ouyang, T.K. Xia: Nanotribology and the stability of nanostructures, Jpn. J. Appl. Phys. 32, 1444–1462 (1993).

    Article  Google Scholar 

  122. J.W.M. Frenken, H.M. Vanpinxteren, L. Kuipers: New views on surface melting obtained with STM and ion scattering, Surf. Sci. 283, 283–289 (1993).

    Article  Google Scholar 

  123. O. Tomagnini, F. Ercolessi, E. Tosatti: Microscopic interaction between a gold tip and a Pb(110) surface, Surf. Sci. 287, 1041–1045 (1993).

    Article  Google Scholar 

  124. K. Komvopoulos, W. Yan: Molecular dynamics simulation of single and repeated indentation. J. Appl. Phys. 82, 4823–4830 (1997).

    Article  Google Scholar 

  125. J. Belak, I.F. Stowers: A molecular dynamics model of the orthogonal cutting process, Proc. Am. Soc. Precis. Eng. Annu. Conf. (1990) pp. 76–79.

    Google Scholar 

  126. T. Yokohata, K. Kato: Mechanism of nanoscale indentation, Wear 168, 109–114 (1993).

    Article  Google Scholar 

  127. M. Fournel, E. Lacaze, M. Schott: Tip-surface interactions in STM experiments on Au(111): Atomic-scale metal friction, Europhys. Lett. 34, 489–494 (1996).

    Article  Google Scholar 

  128. J.L. Costakramer, N. Garcia, P. Garciamochales, P.A. Serena: Nanowire formation in macroscopic metallic contacts – Quantum-mechanical conductance tapping a table top, Surf. Sci. 342, L1144–L1149 (1995).

    Article  Google Scholar 

  129. A.I. Yanson. J.M. van Ruitenbeek, I.K. Yanson: Shell effects in alkali metal nanowires, Low Temp. Phys. 27, 807–820 (2001).

    Article  Google Scholar 

  130. A.I. Yanson, I.K. Yanson. J.M. van Ruitenbeek: Crossover from electronic to atomic shell structure in alkali metal nanowires. Phys. Rev. Lett. 8721, 216805 (2001).

    Article  Google Scholar 

  131. C.L. Kelchner, S.J. Plimpton. J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998).

    Article  Google Scholar 

  132. E.T. Lilleodden. J.A. Zimmerman, S.M. Foiles, W.D. Nix: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901–920 (2003).

    Article  MATH  Google Scholar 

  133. A. Hasnaoui, P.M. Derlet, H.V. Swygenhoven: Interaction between dislocations, grain boundaries under an indenter – A molecular dynamics simulation, Acta Mater. 52, 2251–2258 (2004).

    Article  Google Scholar 

  134. O.R. de la Fuente. J.A. Zimmerman, M.A. Gonzalez. J. de la Figuera. J.C. Hamilton, W.W. Pai. J.M. Rojo: Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations. Phys. Rev. Lett. 88, 036101 (2002).

    Article  Google Scholar 

  135. O.A. Shenderova. J.P. Mewkill, D.W. Brenner: Nanoindentation as a probe of nanoscale residual stresses. Mol. Simul. 25, 81–92 (2000).

    Article  Google Scholar 

  136. S. Kokubo: On the change in hardness of a plate caused by bending, Sci. Rep. Tohoku Imp. Univ. 21, 256–267 (1932).

    Google Scholar 

  137. G. Sines, R. Calson: Hardness measurements for determination of residual stresses, ASTM Bulletin 180, 35–37 (1952).

    Google Scholar 

  138. G.U. Oppel: Biaxial elasto-plastic analysis of load and residual stresses, Exp. Mech. 21, 135–140 (1964).

    Article  Google Scholar 

  139. T.R. Simes, S.G. Mellor, D.A. Hills: A note on the influence of residual stress on measured hardness. J. Strain Anal. Eng. Des. 19, 135–137 (1984).

    Article  Google Scholar 

  140. T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, C.T. White, S. Anders, A. Anders, I.G. Brown: Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, Mater. Res. Soc. Symp. Proc. 383, 447–452 (1995).

    Article  Google Scholar 

  141. A. Bolshakov, W.C. Oliver, G.M. Pharr: Influences of stress on the measurement of mechanical properties using nanoindentation. 2. Finite element simulations. J. Mater. Res. 11, 760–768 (1996).

    Article  Google Scholar 

  142. J.D. Schall, D.W. Brenner: Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data. J. Mater. Res. 19, 3172–3180 (2004).

    Article  Google Scholar 

  143. U. Landman, W.D. Luedtke, M.W. Ribarsky: Structural and dynamical consequences of interactions in interfacial systems. J. Vac. Sci. Technol. A 7, 2829–2839 (1989).

    Article  Google Scholar 

  144. J.S. Kallman, W.G. Hoover, C.G. Hoover, A.J. Degroot, S.M. Lee, F. Wooten: Molecular-dynamics of silicon indentation. Phys. Rev. B 47, 7705–7709 (1993).

    Article  Google Scholar 

  145. D.R. Clarke, M.C. Kroll, P.D. Kirchner, R.F. Cook, B.J. Hockey: Amorphization and conductivity of silicon and germanium induced by indentation. Phys. Rev. Lett. 60, 2156–2159 (1988).

    Article  Google Scholar 

  146. A. Kailer, K.G. Nickel, Y.G. Gogotsi: Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations. J. Raman Spectrosc. 30, 939–961 (1999).

    Article  Google Scholar 

  147. K. Minowa, K. Sumino: Stress-induced amorphization of a silicon crystal by mechanical scratching. Phys. Rev. Lett. 69, 320–322 (1992).

    Article  Google Scholar 

  148. G.S. Smith, E.B. Tadmor, E. Kaxiras: Multiscale simulation of loading and electrical resistance in silicon nanoindentation. Phys. Rev. Lett. 84, 1260–1263 (2000).

    Article  Google Scholar 

  149. W.C.D. Cheong, L.C. Zhang: Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation, Nanotechnology 11, 173–180 (2000).

    Article  Google Scholar 

  150. C.F. Sanz-Navarro, S.D. Kenny, R. Smith: Atomistic simulations of structural transformations, Nanotechnology 15, 692–697 (2004).

    Article  Google Scholar 

  151. P. Walsh, A. Omeltchenko, R.K. Kalia, A. Nakano, P. Vashishta, S. Saini: Nanoindentation of silicon nitride: A multimillion-atom molecular dynamics study, Appl. Phys. Lett. 82, 118–120 (2003).

    Article  Google Scholar 

  152. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces, Surf. Sci. 271, 57–67 (1992).

    Article  Google Scholar 

  153. K. Cho. J.D. Joannopoulos: Mechanical hysteresis on an atomic-scale, Surf. Sci. 328, 320–324 (1995).

    Article  Google Scholar 

  154. J.A. Harrison, S.J. Stuart, D.H. Robertson, C.T. White: Properties of capped nanotubes when used as SPM tips. J. Phys. Chem. B 101, 9682–9685 (1997).

    Article  Google Scholar 

  155. J.A. Harrison, S.J. Stuart, A.B. Tutein: A new, reactive potential energy function to study indentation and friction of C13 n-alkane monolayers. In: Interfacial Properties on the Submicron Scale, ed. by J.E. Frommer, R. Overney (ACS, Washington 2001) pp. 216–229.

    Google Scholar 

  156. A. Garg. J. Han, S.B. Sinnott: Interactions of carbon-nanotubule proximal probe tips with diamond and graphene. Phys. Rev. Lett. 81, 2260–2263 (1998).

    Article  Google Scholar 

  157. A. Garg, S.B. Sinnott: Molecular dynamics of carbon nanotubule proximal probe tip-surface contacts. Phys. Rev. B 60, 13786–13791 (1999).

    Article  Google Scholar 

  158. K.J. Tupper, D.W. Brenner: Compression-induced structural transition in a self-assembled monolayer, Langmuir 10, 2335–2338 (1994).

    Article  Google Scholar 

  159. K.J. Tupper, R.J. Colton, D.W. Brenner: Simulations of self-assembled monolayers under compression – Effect of surface asperities, Langmuir 10, 2041–2043 (1994).

    Article  Google Scholar 

  160. S.A. Joyce, R.C. Thomas. J.E. Houston, T.A. Michalske, R.M. Crooks: Mechanical relaxation of organic monolayer films measured by force microscopy. Phys. Rev. Lett. 68, 2790–2793 (1992).

    Article  Google Scholar 

  161. L. Zhang, Y. Leng, S. Jiang: Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: Effects of chain length, terminal group, and scan direction, scan velocity, Langmuir 19, 9742–9747 (2003).

    Article  Google Scholar 

  162. A.B. Tutein, S.J. Stuart. J.A. Harrison: Indentation analysis of linear-chain hydrocarbon monolayers anchored to diamond. J. Phys. Chem. B 103, 11357–11365 (1999).

    Article  Google Scholar 

  163. Y. Leng, S. Jiang: Dynamic simulations of adhesion and friction in chemical force microscopy, J. Am. Chem. Soc. 124, 11764–11770 (2002).

    Article  Google Scholar 

  164. C.M. Mate: Atomic force microscope study of polymer lubricants on silicon surfaces. Phys. Rev. Lett. 68, 3323–3326 (1992).

    Article  Google Scholar 

  165. S.B. Sinnott, R.J. Colton, C.T. White, O.A. Shenderova, D.W. Brenner. J.A. Harrison: Atomistic simulations of the nanometer-scale indentation of amorphous carbon thin films. J. Vac. Sci. Technol. A 15, 936–940 (1997).

    Article  Google Scholar 

  166. K. Enke, H. Dimigen, H. Hubsch: Frictional properties of diamond-like carbon layers, Appl. Phys. Lett. 36, 291–292 (1980).

    Article  Google Scholar 

  167. K. Enke: Some new results on the fabrication of and the mechanical, electrical, optical properties of i-carbon layers, Thin Solid Films 80, 227–234 (1981).

    Article  Google Scholar 

  168. S. Miyake, S. Takahashi, I. Watanabe, H. Yoshihara: Friction and wear behavior of hard carbon films, ASLE Trans. 30, 121–127 (1987).

    Article  Google Scholar 

  169. A. Erdemir, C. Donnet: Tribology of diamond, diamond-like carbon, and related films. In: Modern Tribology Handbook, Vol. II, ed. by B. Bhushan (CRC, Boca Raton 2000) pp. 871–908.

    Google Scholar 

  170. J.N. Glosli, M.R. Philpott, G.M. McClelland: Molecular dynamics simulation of mechanical deformation of ultra-thin amorphous carbon films, Mater. Res. Soc. Symp. Proc. 383, 431–435 (1995).

    Article  Google Scholar 

  171. I.L. Singer: A thermochemical model for analyzing low wear-rate materials, Surf. Coat. Technol. 49, 474–481 (1991).

    Article  Google Scholar 

  172. I.L. Singer, S. Fayeulle, P.D. Ehni: Friction and wear behavior of tin in air – The chemistry of transfer films and debris formation, Wear 149, 375–394 (1991).

    Article  Google Scholar 

  173. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Molecular dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B 46, 9700–9708 (1992).

    Article  Google Scholar 

  174. J.A. Harrison, R.J. Colton, C.T. White, D.W. Brenner: Effect of atomic-scale surface roughness on friction – A molecular dynamics study of diamond surfaces, Wear 168, 127–133 (1993).

    Article  Google Scholar 

  175. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Atomistic simulations of friction at sliding diamond interfaces, MRS Bulletin 18, 50–53 (1993).

    Google Scholar 

  176. J.N. Glosli, G.M. McClelland: Molecular dynamics study of sliding friction of ordered organic monolayers. Phys. Rev. Lett. 70, 1960–1963 (1993).

    Article  Google Scholar 

  177. A. Koike, M. Yoneya: Molecular dynamics simulations of sliding friction of Langmuir–Blodgett monolayers. J. Chem. Phys. 105, 6060–6067 (1996).

    Article  Google Scholar 

  178. J.E. Hammerberg, B.L. Holian, S.J. Zhou: Studies of sliding friction in compressed copper, in Conference of the American Physical Society Topical Group on Shock Compress, Seattle, ed. by S.C. Schmidt, W.C. Tao (AIP, New York, 1995) p. 370.

    Google Scholar 

  179. M.R. Sorensen, K.W. Jacobsen, P. Stoltze: Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996).

    Article  Google Scholar 

  180. M.D. Perry. J.A. Harrison: Friction between diamond surfaces in the presence of small third-body molecules. J. Phys. Chem. B 101, 1364–1373 (1997).

    Article  Google Scholar 

  181. A. Buldum, S. Ciraci: Atomic-scale study of dry sliding friction. Phys. Rev. B 55, 2606–2611 (1997).

    Article  Google Scholar 

  182. A.P. Sutton. J.B. Pithica: Inelastic flow processes in nanometre volumes of solids. J. Phys. Condens. Matter 2, 5317–5326 (1990).

    Article  Google Scholar 

  183. S. Akamine, R.C. Barrett, C.F. Quate: Improved atomic force microscope images using microcantilevers with sharp tips, Appl. Phys. Lett. 57, 316–318 (1990).

    Article  Google Scholar 

  184. J.A. Nieminen, A.P. Sutton. J.B. Pethica: Static junction growth during frictional sliding of metals, Acta Metall. Mater. 40, 2503–2509 (1992).

    Article  Google Scholar 

  185. J.A. Niemienen, A.P. Sutton. J.B. Pethica, K. Kaski: Mechanism of lubrication by a thin solid film on a metal surface, Model. Simul. Mater. Sci. Eng. 1, 83–90 (1992).

    Article  Google Scholar 

  186. V.V. Pokropivny, V.V. Skorokhod, A.V. Pokropivny: Atomistic mechanism of adhesive wear during friction of atomic sharp tungsten asperity over (114) bcc-iron surface, Mater. Lett. 31, 49–54 (1997).

    Article  Google Scholar 

  187. B. Li, P.C. Clapp. J.A. Rifkin, X.M. Zhang: Molecular dynamics simulation of stick-slip. J. Appl. Phys. 90, 3090–3094 (2001).

    Article  Google Scholar 

  188. T.-H. Fang, C.-I. Weng. J.-G. Chang: Molecular dynamics simulation of nanolithography process using atomic force microscopy, Surf. Sci. 501, 138–147 (2002).

    Article  Google Scholar 

  189. R. Komanduri, N. Chandrasekaran: Molecular dynamics simulation of atomic-scale friction. Phys. Rev. B 61, 14007–14019 (2000).

    Article  Google Scholar 

  190. A. Dayo, W. Alnasrallah. J. Krim: Superconductivity-dependent sliding friction. Phys. Rev. Lett. 80, 1690–1693 (1998).

    Article  Google Scholar 

  191. R. Erlandsson, G. Hadziioannou, C.M. Mate, G.M. McClelland, S. Chiang: Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip. J. Chem. Phys. 89, 5190–5193 (1988).

    Article  Google Scholar 

  192. K.L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge 1985).

    Book  MATH  Google Scholar 

  193. J.B. Pethica: Interatomic forces in scanning tunneling microscopy – Giant corrugations of the graphite surface – Comment. Phys. Rev. Lett. 57, 3235–3235 (1986).

    Article  Google Scholar 

  194. H. Tang, C. Joachim. J. Devillers: Interpretation of AFM images – The graphite surface with a diamond tip, Surf. Sci. 291, 439–450 (1993).

    Article  Google Scholar 

  195. S. Fujisawa, Y. Sugawara, S. Morita: Localized fluctuation of a two-dimensional atomic-scale friction, Jpn. J. Appl. Phys. 35, 5909–5913 (1996).

    Article  Google Scholar 

  196. S. Fujisawa, Y. Sugawara, S. Ito, S. Mishima, T. Okada, S. Morita: The two-dimensional stick-slip phenomenon with atomic resolution, Nanotechnology 4, 138–142 (1993).

    Article  Google Scholar 

  197. S. Fujisawa, Y. Sugawara, S. Morita, S. Ito, S. Mishima, T. Okada: Study on the stick-slip phenomenon on a cleaved surface of the muscovite mica using an atomic-force lateral force microscope. J. Vac. Sci. Technol. B 12, 1635–1637 (1994).

    Article  Google Scholar 

  198. S. Morita, S. Fujisawa, Y. Sugawara: Spatially quantized friction with a lattice periodicity, Surf. Sci. Rep. 23, 1–41 (1996).

    Article  Google Scholar 

  199. J.A. Ruan, B. Bhushan: Atomic-scale and microscale friction studies of graphite and diamond using friction force microscopy. J. Appl. Phys. 76, 5022–5035 (1994).

    Article  Google Scholar 

  200. R.W. Carpick, N. Agrait, D.F. Ogletree, M. Salmeron: Variation of the interfacial shear strength and adhesion of a nanometer-sized contact, Langmuir 12, 3334–3340 (1996).

    Article  Google Scholar 

  201. R.W. Carpick, N. Agrait, D.F. Ogletree, M. Salmeron: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vac. Sci. Technol. B 14, 1289–2772 (1996).

    Article  Google Scholar 

  202. T. Liang, W.G. Sawyer, S.S. Perry, S.B. Sinnott, S.R. Phillpot: First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys. Rev. B 77(10), 104105 (2008).

    Article  Google Scholar 

  203. A.L. Shluger, R.T. Williams, A.L. Rohl: Lateral and friction forces originating during force microscope scanning of ionic surfaces, Surf. Sci. 343, 273–287 (1995).

    Article  Google Scholar 

  204. B. Samuels. J. Wilks: The friction of diamond sliding on diamond. J. Mater. Sci. 23, 2846–2864 (1988).

    Article  Google Scholar 

  205. T. Cagin. J.W. Che, M.N. Gardos, A. Fijany, W.A. Goddard: Simulation and experiments on friction, wear of diamond: A material for MEMS and NEMS application, Nanotechnology 10, 278–284 (1999).

    Article  Google Scholar 

  206. R.J.A. van den Oetelaar, C.F.J. Flipse: Atomic-scale friction on diamond(111) studied by ultra-high vacuum atomic force microscopy, Surf. Sci. 384, L828–L835 (1997).

    Article  Google Scholar 

  207. M. Enachescu, R.J.A. van den Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse, M. Salmeron: Atomic force microscopy study of an ideally hard contact: The diamond(111) tungsten carbide interface. Phys. Rev. Lett. 81, 1877–1880 (1998).

    Article  Google Scholar 

  208. B.V. Derjaguin, V.M. Muller, Y. Toporov: Effect of contact deformations on adhesion of particles. J. Colloid Interf. Sci. 53, 314–326 (1975).

    Article  Google Scholar 

  209. M.D. Perry. J.A. Harrison: Universal aspects of the atomic-scale friction of diamond surfaces. J. Phys. Chem. B 99, 9960–9965 (1995).

    Article  Google Scholar 

  210. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics, Thin Solid Films 260, 205–211 (1995).

    Article  Google Scholar 

  211. M.J. Brukman, G.G.R.J. Nemanich. J.A. Harrison: Temperature dependence of single asperity diamond-diamond friction elucidated using AFM and MD simulations. J. Phys. Chem. 112, 9358–9369 (2008).

    Google Scholar 

  212. R. Neitola, T.A. Pakannen: Ab initio studies on the atomic-scale origin of friction between diamond (111) surfaces. J. Phys. Chem. B 105, 1338–1343 (2001).

    Article  Google Scholar 

  213. J.A. Harrison, R.J. Colton, C.T. White, D.W. Brenner: Atomistic simulation of the nanoindentation of diamond and graphite surfaces, Mater. Res. Soc. Symp. Proc. 239, 573–578 (1992).

    Article  Google Scholar 

  214. D. Mulliah, S.D. Kenny, R. Smith: Modeling of stick-slip phenomena using molecular dynamics. Phys. Rev. B 69, 205407 (2004).

    Article  Google Scholar 

  215. D.W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990).

    Article  Google Scholar 

  216. G.J. Ackland, G. Tichy, V. Vitek, M.W. Finnis: Simple n-body potentials for the noble metals and nickel, Philos. Mag. A 56, 735–756 (1987).

    Article  Google Scholar 

  217. J.P. Biersack. J. Ziegler, U. Littmack: The Stopping and Range of Ions in Solids (Pergamon, Oxford, 1985).

    Google Scholar 

  218. J. Cai. J.-S. Wang: Friction between Si tip and (001)–2 × 1 surface: A molecular dynamics simulation, Comput. Phys. Commun. 147, 145–148 (2002).

    Article  MATH  Google Scholar 

  219. J. Cai. J.S. Wang: Friction between a Ge tip and the (001)–2 × 1 surface: A molecular dynamics simulation. Phys. Rev. B 64, 113313 (2001).

    Article  Google Scholar 

  220. A.G. Khurshudov, K. Kato, H. Koide: Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM, Tribol. Lett. 2, 345–354 (1996).

    Article  Google Scholar 

  221. A. Khurshudov, K. Kato: Volume increase phenomena in reciprocal scratching of polycarbonate studied by atomic-force microscopy. J. Vac. Sci. Technol. B 13, 1938–1944 (1995).

    Article  Google Scholar 

  222. M.D. Perry. J.A. Harrison: Molecular dynamics studies of the frictional properties of hydrocarbon materials, Langmuir 12, 4552–4556 (1996).

    Article  Google Scholar 

  223. M.D. Perry. J.A. Harrison: Molecular dynamics investigations of the effects of debris molecules on the friction and wear of diamond, Thin Solid Films 291, 211–215 (1996).

    Article  Google Scholar 

  224. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner: Effects of chemically-bound, flexible hydrocarbon species on the frictional properties of diamond surfaces. J. Phys. Chem. 97, 6573–6576 (1993).

    Article  Google Scholar 

  225. J.A. Harrison, D.W. Brenner: Simulated tribochemistry – An atomic-scale view of the wear of diamond, J. Am. Chem. Soc. 116, 10399–10402 (1994).

    Article  Google Scholar 

  226. Z. Feng. J.E. Field: Friction of diamond on diamond and chemical vapor deposition diamond coatings, Surf. Coat. Technol. 47, 631–645 (1991).

    Article  Google Scholar 

  227. B.N.J. Persson: Applications of surface resistivity to atomic scale friction, to the migration of hot adatoms, and to electrochemistry. J. Chem. Phys. 98, 1659–1672 (1993).

    Article  Google Scholar 

  228. B.N.J. Persson, A.I. Volokitin: Electronic friction of physisorbed molecules. J. Chem. Phys. 103, 8679–8683 (1995).

    Article  Google Scholar 

  229. H. Grabhorn, A. Otto, D. Schumacher, B.N.J. Persson: Variation of the dc-resistance of smooth and atomically rough silver films during exposure to C2H6 and C2H4, Surf. Sci. 264, 327–340 (1992).

    Article  Google Scholar 

  230. A.D. Berman, W.A. Ducker. J.N. Israelachvili: Origin and characterization of different stick-slip friction mechanisms, Langmuir 12, 4559–4563 (1996).

    Article  Google Scholar 

  231. B.N.J. Persson: Theory of friction – Dynamical phase transitions in adsorbed layers. J. Chem. Phys. 103, 3849–3860 (1995).

    Article  Google Scholar 

  232. B.N.J. Persson, E. Tosatti: Layering transition in confined molecular thin films – Nucleation and growth. Phys. Rev. B 50, 5590–5599 (1994).

    Article  Google Scholar 

  233. H. Yoshizawa. J. Israelachvili: Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules. J. Phys. Chem. 97, 11300–11313 (1993).

    Article  Google Scholar 

  234. B.N.J. Persson: Theory of friction: Friction dynamics for boundary lubricated surfaces. Phys. Rev. B 55, 8004–8012 (1997).

    Article  Google Scholar 

  235. P.A. Thompson, M.O. Robbins: Origin of stick-slip motion in boundary lubrication, Science 250, 792–794 (1990).

    Article  Google Scholar 

  236. U. Landman, W.D. Luedtke. J.P. Gao: Atomic-scale issues in tribology: Interfacial junctions and nano-elastohydrodynamics, Langmuir 12, 4514–4528 (1996).

    Article  Google Scholar 

  237. T. Kreer, M.H. Müser, K. Binder. J. Klein: Frictional drag mechanisms between polymer-bearing surfaces, Langmuir 17, 7804–7813 (2001).

    Article  Google Scholar 

  238. T. Kreer, K. Binder, M.H. Müser: Friction between polymer brushes in good solvent conditions: Steady-state sliding versus transient behavior, Langmuir 19, 7551–7559 (2003).

    Article  Google Scholar 

  239. E. Manias, G. Hadziioannou, G. ten Brinke: Inhomogeneities in sheared ultrathin lubricating films, Langmuir 12, 4587–4593 (1996).

    Article  Google Scholar 

  240. R.M. Overney, T. Bonner, E. Meyer, M. Reutschi, R. Luthi, L. Howald. J. Frommer, H.J. Guntherodt, M. Fujihara, H. Takano: Elasticity, wear, and friction properties of thin organic films observed with atomic-force microscopy. J. Vac. Sci. Technol. B 12, 1973–1976 (1994).

    Article  Google Scholar 

  241. R.M. Overney, E. Meyer. J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H.J. Guntherodt, M. Fujihira, H. Takano, Y. Gotoh: Friction measurements on phase-separated thin-films with a modified atomic force microscope, Nature 359, 133–135 (1992).

    Article  Google Scholar 

  242. R.M. Overney, E. Meyer. J. Frommer, H.J. Guntherodt, M. Fujihira, H. Takano, Y. Gotoh: Force microscopy study of friction and elastic compliance of phase-separated organic thin-films, Langmuir 10, 1281–1286 (1994).

    Article  Google Scholar 

  243. H.I. Kim, T. Koini, T.R. Lee, S.S. Perry: Systematic studies of the frictional properties of fluorinated monolayers with atomic force microscopy: Comparison of CF3- and CH3- terminated films, Langmuir 13, 7192–7196 (1997).

    Article  Google Scholar 

  244. M. GarciaParajo, C. Longo. J. Servat, P. Gorostiza, F. Sanz: Nanotribological properties of octadecyltrichlorosilane self-assembled ultrathin films studied by atomic force microscopy: Contact and tapping modes, Langmuir 13, 2333–2339 (1997).

    Article  Google Scholar 

  245. R.M. Overney, H. Takano, M. Fujihira, E. Meyer, H.J. Guntherodt: Wear, friction and sliding speed correlations on Langmuir–Blodgett films observed by atomic force microscopy, Thin Solid Films 240, 105–109 (1994).

    Article  Google Scholar 

  246. P.T. Mikulski. J.A. Harrison: Periodicities in the properties associated with the friction of model self-assembled monolayers, Tribol. Lett. 10, 29–35 (2001).

    Article  Google Scholar 

  247. P.T. Mikulski. J.A. Harrison: Packing density effects on the friction of n-alkane monolayers, J. Am. Chem. Soc. 123, 6873–6881 (2001).

    Article  Google Scholar 

  248. E. Barrena, C. Ocal, M. Salmeron: A comparative AFM study of the structural and frictional properties of mixed and single component films of alkanethiols on Au(111), Surf. Sci. 482, 1216–1221 (2001).

    Article  Google Scholar 

  249. Y.-S. Shon, S. Lee, R. Colorado, S.S. Perry, T.R. Lee: Spiroalkanedithiol-based SAMS reveal unique insight into the wettabilities and frictional properties of organic thin films, J. Am. Chem. Soc. 122, 7556–7563 (2000).

    Article  Google Scholar 

  250. P.T. Mikulski, G. Gao, G.M. Chateauneuf. J.A. Harrison: Contact forces at the sliding interface: Mixed versus pure model alkane monolayers. J. Chem. Phys. 122, 024701 (2005).

    Article  Google Scholar 

  251. S. Lee, Y.S. Shon, R. Colorado, R.L. Guenard, T.R. Lee, S.S. Perry: The influence of packing densities, surface order on the frictional properties of alkanethiol self-assembled monolayers (SAMs) on gold: A comparison of SAMs derived from normal and spiroalkanedithiols, Langmuir 16, 2220–2224 (2000).

    Article  Google Scholar 

  252. P.T. Mikulski, L.A. Herman. J.A. Harrison: Odd and even model self-assembled monolayers: Links between friction and structure, Langmuir 21(26), 12197–12206 (2005).

    Article  Google Scholar 

  253. S.S. Wong, H. Takano, M.D. Porter: Mapping orientation differences of terminal functional groups by friction force microscopy, Anal. Chem. 70(24), 5209–5212 (1998).

    Article  Google Scholar 

  254. G.M. Chateauneuf, P.T. Mikulski, G.T. Gao. J.A. Harrison: Compression- and shear-induced polymerization in model diacetylene-containing monolayers. J. Phys. Chem. B 108, 16626–16635 (2004).

    Article  Google Scholar 

  255. L. Zhang, S. Jiang: Molecular simulation study of nanoscale friction for alkyl monolayers on Si(111). J. Chem. Phys. 117, 1804–1811 (2002).

    Article  Google Scholar 

  256. L.Z. Zhang, Y.S. Leng, S.Y. Jiang: Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: Effects of chain length, terminal group, scan direction, and scan velocity, Langmuir 19, 9742–9747 (2003).

    Article  Google Scholar 

  257. M. Chandross, E.B.W. III, M.J. Stevens, G.S. Grest: Systematic study of the effect of disorder on nanotribology of self-assembled monolayers. Phys. Rev. Lett. 93, 166103 (2004).

    Article  Google Scholar 

  258. M. Chandross, G.S. Grest, M.J. Stevens: Friction between alkylsilane monolayers: Molecular simulation of ordered monolayers, Langmuir 18, 8392–8399 (2002).

    Article  Google Scholar 

  259. M. Chandross, C.D. Lorenz, M.J. Stevens, G.S. Grest: Simulations of nanotribology with realistic probe tip models, Langmuir 24(4), 1240–1246 (2008).

    Article  Google Scholar 

  260. D.L. Irving, D.W. Brenner: Diffusion on a self-assembled monolayer: Molecular modeling of a bound plus mobile lubricant. J. Phys. Chem. B 110(31), 15426–15431 (2006).

    Article  Google Scholar 

  261. D.W. Brenner, D.L. Irving, A.I. Kingon. J. Krim: Multiscale analysis of liquid lubrication trends from industrial machines to micro-electrical-mechanical systems, Langmuir 23(18), 9253–9257 (2007).

    Article  Google Scholar 

  262. I. Jang, D.L. Burris, P.L. Dickrell, P.R. Barry, C. Santos, S.S. Perry, S.R. Phillpot, S.B. Sinnott, W.G. Sawyer: Sliding orientation effects on the tribological properties of polytetrafluoroethylene. J. Appl. Phys. 102(12), 123509 (2007).

    Article  Google Scholar 

  263. S.J. Heo, I. Jang, P.R. Barry, S.R. Phillpot, S.S. Perry, W.G. Sawyer, S.B. Sinnott: Effect of the sliding orientation on the tribological properties of polyethylene in molecular dynamics simulations. J. Appl. Phys. 103(8), 083502 (2008).

    Article  Google Scholar 

  264. S.B. Sinnott, R. Andrews: Carbon nanotubes: Synthesis, properties and applications, Crit. Rev. Solid State Mater. Sci. 26, 145–249 (2001).

    Article  Google Scholar 

  265. B. Bhushan, B.K. Gupta, G.W. Van Cleef, C. Capp. J.V. Coe: Sublimed C60 films for tribology, Appl. Phys. Lett. 62, 3253–3255 (1993).

    Article  Google Scholar 

  266. T. Thundat, R.J. Warmack, D. Ding, R.N. Compton: Atomic force microscope investigation of C60 adsorbed on silicon and mica, Appl. Phys. Lett. 63, 891–893 (1993).

    Article  Google Scholar 

  267. C.M. Mate: Nanotribology studies of carbon surfaces by force microscopy, Wear 168, 17–20 (1993).

    Article  Google Scholar 

  268. R. Lüthi, E. Meyer, H. Haefke: Sled-type motion on the nanometer scale: Determination of dissipation and cohesive energies of C60, Science 266, 1979–1981 (1993).

    Article  Google Scholar 

  269. R. Lüthi, H. Haefke, E. Meyer, L. Howald, H.-P. Lang, G. Gerth, H.J. Güntherodt: Frictional and atomic-scale study of C60 thin films by scanning force microscopy, Z. Phys. B 95, 1–3 (1994).

    Article  Google Scholar 

  270. Q.-J. Xue, X.-S. Zhang, F.-Y. Yan: Study of the structural transformations of C60/C70 crystals during friction, Chin. Sci. Bull. 39, 819–822 (1994).

    Google Scholar 

  271. W. Allers, U.D. Schwarz, G. Gensterblum, R. Wiesendanger: Low-load friction behavior of epitaxial C60 monolayers, Z. Phys. B 99, 1–2 (1995).

    Article  Google Scholar 

  272. U.D. Schwarz, W. Allers, G. Gensterblum, R. Wiesendanger: Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. Phys. Rev. B 52, 14976–14984 (1995).

    Article  Google Scholar 

  273. J. Ruan, B. Bhushan: Nanoindentation studies of sublimed fullerene films using atomic force microscopy. J. Mater. Res. 8, 3019–3022 (1996).

    Article  Google Scholar 

  274. U.D. Schwarz, O. Zworner, P. Koster, R. Wiesendanger: Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Phys. Rev. B 56, 6987–6996 (1997).

    Article  Google Scholar 

  275. S. Okita, M. Ishikawa, K. Miura: Nanotribological behavior of C60 films at an extremely low load, Surf. Sci. 442, L959–L963 (1999).

    Article  Google Scholar 

  276. S. Okita, K. Miura: Molecular arrangement in C60 and C70 films on graphite and their nanotribological behavior, Nano Lett. 1, 101–103 (2001).

    Article  Google Scholar 

  277. K. Miura, S. Kamiya, N. Sasaki: C60 molecular bearings. Phys. Rev. Lett. 90, 055509 (2003).

    Article  Google Scholar 

  278. A. Buldum. J.P. Lu: Atomic scale sliding and rolling of carbon nanotubes. Phys. Rev. Lett. 83, 5050–5053 (1999).

    Article  Google Scholar 

  279. M.R. Falvo, R.M. Taylor, A. Helser, V. Chi, F.P. Brooks, S. Washburn, R. Superfine: Nanometer-scale rolling and sliding of carbon nanotubes, Nature 397, 236–238 (1999).

    Article  Google Scholar 

  280. M.R. Falvo. J. Steele, R.M.T. Taylor II, R. Superfine: Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG. Phys. Rev. B 62, R10664–R10667 (2000).

    Article  Google Scholar 

  281. J.D. Schall, D.W. Brenner: Molecular dynamics simulations of carbon nanotube rolling and sliding on graphite. Mol. Simul. 25, 73–80 (2000).

    Article  Google Scholar 

  282. B. Ni, S.B. Sinnott: Tribological properties of carbon nanotube bundles, Surf. Sci. 487, 87–96 (2001).

    Article  Google Scholar 

  283. B. Ni, S.B. Sinnott: Mechanical and tribological properties of carbon nanotubes investigated with atomistic simulations, Nanotubes and related materials. In: Nanotubes and Related Materials, MRS Proc., Vol. 633, ed. by A.M. Rao (Materials Research Society, Pittsburgh 2001) pp. A17.13.11–A17.13.15.

    Google Scholar 

  284. K. Miura, T. Takagi, S. Kamiya, T. Sahashi, M. Yamauchi: Natural rolling of zigzag multiwalled carbon nanotubes on graphite, Nano Lett. 1, 161–163 (2001).

    Article  Google Scholar 

  285. K. Miura, M. Ishikawa, R. Kitanishi, M. Yoshimura, K. Ueda, Y. Tatsumi, N. Minami: Bundle structure and sliding of single-walled carbon nanotubes observed by friction-force microscopy, Appl. Phys. Lett. 78, 832–834 (2001).

    Article  Google Scholar 

  286. P.E. Sheehan, C.M. Lieber: Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy, Science 272, 1158–1161 (1996).

    Article  Google Scholar 

  287. J. Wang, K.C. Rose, C.M. Lieber: Load-independent friction: MoO3 nanocrystal lubricants, J. Phys. Chem. B 103, 8405–8408 (1999).

    Article  Google Scholar 

  288. Q. Ouyang, K. Okada: Nanoballbearing effect of ultra-fine particles of cluster diamond, Appl. Surf. Sci. 78, 309–313 (1994).

    Article  Google Scholar 

  289. R. Luthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, H.J. Guntherodt: Sled-type motion on the nanometer-scale – Determination of dissipation and cohesive energies of C60, Science 266, 1979–1981 (1994).

    Article  Google Scholar 

  290. B. Bhushan, B.K. Gupta, G.W. Vancleef, C. Capp. J.V. Coe: Fullerene (C60) films for solid lubrication, Tribol. Trans. 36, 573–580 (1993).

    Article  Google Scholar 

  291. U.D. Schwarz, W. Allers, G. Gensterblum, R. Wiesendanger: Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact, Phys. Rev. B 52, 14976–14984 (1995).

    Article  Google Scholar 

  292. S.B. Legoas, R. Giro, D.S. Galvao: Molecular dynamics simulations of C60 nanobearings, Chem. Phys. Lett. 386, 425–429 (2004).

    Article  Google Scholar 

  293. S. Heo, S.B. Sinnott: Effect of molecular interactions on carbon nanotube friction, J. Appl. Phys. 102(6), 064307 (2007).

    Article  Google Scholar 

  294. P.L. Dickrell, S.B. Sinnott, D.W. Hahn, N.R. Raravikar, L.S. Schadler, P.M. Ajayan, W.G. Sawyer: Frictional anisotropy of oriented carbon nanotube surfaces, Tribol. Lett. 18, 59–62 (2005).

    Article  Google Scholar 

  295. F.P. Bowden, D. Tabor: The Friction and Lubrication of Solids, Part 2 (Clarendon, Oxford, 1964).

    Google Scholar 

  296. G.T. Gao, P.T. Mikulski. J.A. Harrison: Molecular-scale tribology of amorphous carbon coatings: Effects of film thickness, adhesion, and long-range interactions, J. Am. Chem. Soc. 124, 7202–7209 (2002).

    Article  Google Scholar 

  297. G.T. Gao, P.T. Mikulski, G.M. Chateauneuf. J.A. Harrison: The effects of film structure and surface hydrogen on the properties of amorphous carbon films, J. Phys. Chem. B 107, 11082–11090 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan B. Sinnott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sinnott, S.B., Heo, SJ., Brenner, D.W., Harrison, J.A., Irving, D.L. (2011). Computer Simulations of Nanometer-Scale Indentation and Friction. In: Bhushan, B. (eds) Nanotribology and Nanomechanics I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15283-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15283-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15282-5

  • Online ISBN: 978-3-642-15283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics