Skip to main content

The Use of Tracers to Investigate Phosphate Cycling in Soil–Plant Systems

  • Chapter
  • First Online:
Phosphorus in Action

Abstract

The use of tracers is relevant to study the transformations of phosphorus (P) in the soil–plant system because (a) only a small fraction of the total soil P is rapidly circulating in this system, (b) P participates in many reactions in the soil, some occurring within a few seconds, others over years, and (c) P is distributed in many pools in the soil. This review presents the use of P radioisotopes (a) to probe pools and to study P transformations in soils, (b) to trace the fate of fertilizers in soil–plant systems, and (c) to assess the foraging strategies of arbuscular mycorrhizal fungi for P. Finally, we discuss the potential of analyzing the oxygen isotopes bound to P to study soil P dynamics and the research needed to achieve this aim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achat DL, Bakker MR, Augusto L, Saur E, Dousseron L, Morel C (2009a) Evaluation of the phosphorus status of P-deficient podzols in temperate pine stands: combining isotopic dilution and extraction methods. Biogeochemistry 92:183–200

    CAS  Google Scholar 

  • Achat DL, Bakker MR, Morel C (2009b) Process-based assessment of P availability in a low P-sorbing forest soil using isotopic dilution methods. Soil Sci Soc Am J 73:2131–2142

    CAS  Google Scholar 

  • Achat DL, Bakker MR, Saur E, Pellerin S, Augusto L, Morel C (2010) Quantifying gross mineralisation of P in dead soil organic matter: testing an isotopic dilution method. Geoderma 158:163–172

    Google Scholar 

  • Amer F, Mahdi S, Alradi A (1969) Limitations in isotopic measurement of labile phosphate in soils. J Soil Sci 20:91–100

    CAS  Google Scholar 

  • Armstrong RD, Helyar KR (1993) Utilization of labeled mineral and organic phosphorus sources by grasses common to semiarid mulga shrublands. Aust J Soil Res 31:271–283

    CAS  Google Scholar 

  • Atkins GL (1969) Multicompartmental models for biological systems. Methuen, London

    Google Scholar 

  • Ayliffe LK, Veeh HH, Chivas AR (1992) The oxygen isotopes of phosphate and the origin of island apatite deposits. Earth Planet Sci Lett 108:119–129

    CAS  Google Scholar 

  • Barrow NJ (1974) The slow reactions between soil and anions. 1. Effects of time, temperature and water content of a soil on the decrease in effectiveness of phosphate for plant growth. Soil Sci 118:380–386

    CAS  Google Scholar 

  • Barrow NJ (1983) A mechanistic model for describing the sorption and desorption of phosphate by soil. J Soil Sci 34:733–750

    CAS  Google Scholar 

  • Barrow NJ (1991) Testing a mechanistic model. XI. The effects of time and of level of application on isotopically exchangeable phosphate. J Soil Sci 42:277–288

    CAS  Google Scholar 

  • Barrow NJ, Shaw TC (1975a) The slow reactions between soil and anions. 5. Effects of period of prior contact on the desorption of phosphate from soils. Soil Sci 119:311–320

    CAS  Google Scholar 

  • Barrow NJ, Shaw TC (1975b) The slow reactions between soil and anions. 3. The effects of time and temperature on the decrease in isotopically exchangeable phosphate. Soil Sci 119:190–197

    CAS  Google Scholar 

  • Benitez-Nelson CR, Buesseler KO (1999) Variability of inorganic and organic phosphorus turnover rates in the coastal ocean. Nature 398(6727):502–505

    CAS  Google Scholar 

  • Bertrand I, Holloway RE, Armstrong RD, McLaughlin MJ (2003) Chemical characteristics of phosphorus in alkaline soils from southern Australia. Aust J Soil Res 41:61–76

    CAS  Google Scholar 

  • Blake RE, O’Neil JR, Garcia GA (1998) Effects of microbial activity on the delta O-18 of dissolved inorganic phosphate and textural features of synthetic apatites. Am Mineral 83:1516–1531

    CAS  Google Scholar 

  • Blake RE, Alt JC, Martini AM (2001) Oxygen isotope ratios of PO4: an inorganic indicator of enzymatic activity and P metabolism and a new biomarker in the search for life. Proc Natl Acad Sci USA 98:2148–2153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blake RE, O’Neil JR, Surkov AV (2005) Biogeochemical cycling of phosphorus: insights from oxygen isotope effects of phosphoenzymes. Am J Sci 305:596–620

    CAS  Google Scholar 

  • Blal B, Morel C, Gianinazzi-Pearson V, Fardeau JC, Gianinazzi S (1990) Influence of vesicular-arbuscular mycorrhizae on phosphate fertilizer efficiency in two tropical acid soils planted with micropropated oil palm (Elaeis guineensis jacq.). Biol Fertil Soils 9:43–48

    CAS  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    CAS  Google Scholar 

  • Bolan NS, Hedley MJ, Syers JK, Tillman RW (1987) Single superphosphate-reactive phosphate rock mixtures. 1. Factors affecting chemical composition. Fert Res 13:223–239

    CAS  Google Scholar 

  • Boniface R, Fardeau JC, Guiraud G, Trocme S (1979) Use of phosphorus and nitrogen applied to wheat fertilization – studies using labeled elements. Agrochimica 23:165–178

    CAS  Google Scholar 

  • Bowman RA, Olsen ST, Wanatabe FS (1978) Greenhouse evaluation of residual phosphate by 4 phosphorus methods in neutral and calcareous soils. Soil Sci Soc Am J 42:451–454

    CAS  Google Scholar 

  • Braum SM, Helmke PA (1995) White lupine utilizes soil-phosphorus that is unavailable to soybean. Plant Soil 176:95–100

    CAS  Google Scholar 

  • Brookes PC (1982) Correction for seed-phosphorus effects in L-value determinations. J Sci Food Agric 33:329–335

    CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    CAS  PubMed  Google Scholar 

  • Bühler S, Oberson A, Sinaj S, Friesen DK, Frossard E (2003) Isotope methods for assessing plant available phosphorus in acid tropical soils. Eur J Soil Sci 54:605–616

    Google Scholar 

  • Bünemann EK, Condron LM (2007) Phosphorus and sulphur cycling in terrestrial ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Soil biology, vol 10. Springer, Heidelberg, pp 65–92

    Google Scholar 

  • Bünemann EK, Steinebrunner F, Smithson PC, Frossard E, Oberson A (2004) Phosphorus dynamics in a highly weathered soil as revealed by isotopic labeling techniques. Soil Sci Soc Am J 68:1645–1655

    Google Scholar 

  • Bünemann EK, Marschner P, McNeill AM, McLaughlin MJ (2007) Measuring rates of gross and net mineralisation of organic phosphorus in soils. Soil Biol Biochem 39:900–913

    Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650

    CAS  Google Scholar 

  • Cobelli C, Foster D, Toffolo G (2000) Tracer kinetics in biomedical research. From data to model. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Colman AS, Blake RE, Karl DM, Fogel ML, Turekian KK (2005) Marine phosphate oxygen isotopes and organic matter remineralization in the oceans. Proc Natl Acad Sci USA 102:13023–13028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Google Scholar 

  • de Kok LJ, Schnug E (eds) (2008) Loads and fate of fertilizer-derived uranium. Margraf, Weikersheim

    Google Scholar 

  • Dean LA, Krantz BA, Colwell WE, Woltz WG, Hawkins A, Nelson WL, MacKenzie AJ, Rubins EJ (1947) Application of radioactive tracer technique to studies of phosphatic fertilizer utilization by crops: greenhouse experiments. Soil Sci Soc Am Proc 12:107–112

    Google Scholar 

  • Di HJ, Condron LM, Frossard E (1997) Isotope techniques to study phosphorus cycling in agricultural and forest soils: a review. Biol Fertil Soils 27:1–12

    Google Scholar 

  • Diesing WE, Sinaj S, Sarret G, Manceau A, Flura T, Demaria P, Siegenthaler A, Sappin-Didier V, Frossard E (2008) Zinc speciation and isotopic exchangeability in soils polluted with heavy metals. Eur J Soil Sci 59:716–729

    CAS  Google Scholar 

  • Ehlert P, Morel C, Fotyma M, Destain JP (2003) Potential role of phosphate buffering capacity of soils in fertilizer management strategies fitted to environmental goals. J Plant Nutr Soil Sci 166:409–415

    CAS  Google Scholar 

  • Elsbury KE, Paytan A, Ostrom NE, Kendall C, Young MB, McLaughlin K, Rollog ME, Watson S (2009) Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie. Environ Sci Technol 43:3108–3114

    CAS  PubMed  Google Scholar 

  • Endt PM (1990) Energy levels of A = 21-44 nuclei (VII). Nucl Phys A 521:1–830

    Google Scholar 

  • Fardeau JC (1981) Cinétiques de dilution isotopique et phosphore assimilable des sols. Thèse de Doctorat d’Etat, Université Paris 6, Paris

    Google Scholar 

  • Fardeau JC (1993) Available soil phosphate – its representation by a functional multiple compartmental model. Agronomie 13:317–331

    Google Scholar 

  • Fardeau JC (1996) Dynamics of phosphate in soils. An isotopic outlook. Fert Res 45:91–100

    Google Scholar 

  • Fardeau JC, Jappe J (1976) New method for measure of available soil phosphate – extrapolation of isotopic dilution kinetics. C R Acad Sci Hebd Seances Acad Sci D 282(11):1137–1140

    CAS  Google Scholar 

  • Fardeau JC, Morel C, Jappe J (1985) Exchange kinetics of phosphate ions in the soil-solution system – experimental verification of theoretical equations. C R Acad Sci III 300(8):371–376

    Google Scholar 

  • Fardeau JC, Morel C, Jahiel JM (1988) Does long term contact with the soil improve the efficiency of rock phosphate – results of isotopic studies. Fert Res 17:3–19

    Google Scholar 

  • Fardeau JC, Morel C, Boniface R (1991) Phosphate transfer from soil to soil solution-kinetic parameters. Agronomie 11:787–797

    Google Scholar 

  • Friesen DK, Blair GJ (1988) A dual radiotracer study of transformations of organic, inorganic and plant residue phosphorus in soil in presence and absence of plants. Aust J Soil Res 26:355–366

    Google Scholar 

  • Frossard E, Sinaj S (1997) The isotope exchange kinetic technique: a method to describe the availability of inorganic nutrients. Applications to K, PO4, SO4 and Zn. Isotopes Environ Health Stud 33:61–77

    CAS  Google Scholar 

  • Frossard E, Feller C, Tiessen H, Stewart JWB, Fardeau JC, Morel JL (1993) Can an isotopic method allow for the determination of the phosphate fixing capacity of soils? Commun Soil Sci Plant Anal 24:367–377

    CAS  Google Scholar 

  • Frossard E, Fardeau JC, Brossard M, Morel JL (1994) Soil isotopically exchangeable phosphorus: a comparison between E and L values. Soil Sci Soc Am J 58:846–851

    CAS  Google Scholar 

  • Frossard E, Brossard M, Hedley MJ, Metherell A (1995) Reactions controlling the cycling of P in soils. In: Tiessen H (ed) Phosphorus cycling in terrestrial and aquatic ecosystems: a global perspective. SCOPE/Wiley, New York, pp 107–137

    Google Scholar 

  • Frossard E, Sinaj S, Zhang LM, Morel JL (1996) The fate of sludge phosphorus in soil-plant systems. Soil Sci Soc Am J 60:1248–1253

    CAS  Google Scholar 

  • Frossard E, Bünemann E, Jansa J, Oberson A, Feller C (2009) Concepts and practices of nutrient management in agro-ecosystems: can we draw lessons from history to design future sustainable agricultural production systems? Die Bodenkultur 60:43–60

    Google Scholar 

  • Frossard E, Bünemann EK, Oberson A, Jansa J, Kertesz MA (2011) Phosphorus and sulfur in soil. In: Huang PM, Sumner ME, Yuncong L (eds) Handbook of soil sciences, 2nd edn. CRC, Boca Raton (in press). ISBN 978-1-4398030-3-5

    Google Scholar 

  • Gallet A, Flisch R, Ryser J-P, Frossard E, Sinaj S (2003a) Effect of phosphate fertilization on crop yield and soil phosphorus status. J Plant Nutr Soil Sci 166:568–578

    CAS  Google Scholar 

  • Gallet A, Flisch R, Ryser J-P, Nösberger J, Frossard E, Sinaj S (2003b) Uptake of residual phosphate and freshly applied diammonium phosphate by Lolium perenne and Trifolium repens. J Plant Nutr Soil Sci 166:557–567

    CAS  Google Scholar 

  • Gamper HA, Young JPW, Jones DL, Hodge A (2008) Real-time PCR and microscopy: are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance? Fungal Genet Biol 45:581–596

    CAS  PubMed  Google Scholar 

  • Göransson H, Rosengren U, Wallander H, Fransson AM, Thelin G (2006) Nutrient acquisition from different soil depths by pedunculate oak. Trees Struct Funct 20:292–298

    Google Scholar 

  • Grace EJ, Cotsaftis O, Tester M, Smith FA, Smith SE (2009) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol 181:938–949

    CAS  PubMed  Google Scholar 

  • Hamon RE, McLaughlin MJ (2002) Interferences in the determination of isotopically exchangeable P in soils and a method to minimise them. Aust J Soil Res 40:1383–1397

    CAS  Google Scholar 

  • Hamon RE, Bertrand I, McLaughlin MJ (2002) Use and abuse of isotopic exchange data in soil chemistry. Aust J Soil Res 40:1371–1381

    CAS  Google Scholar 

  • Harrison AF (1982) 32-P method to compare rates of mineralization of labile organic phosphorus in woodland soils. Soil Biol Biochem 14:337–341

    CAS  Google Scholar 

  • Hedley MJ, White RE, Nye PH (1982) Plant-induced changes in the rhizosphere of rape (Brassica napus var emerald) seedlings. 3. Changes in L value, soil phosphate fractions and phosphatase activity. New Phytol 91:45–56

    CAS  Google Scholar 

  • Hedley MJ, Bolan NS, Braithwaite AC (1988) Single superphosphate reactive phosphate rock mixtures. 2. The effect of phosphate rock type and denning time on the amounts of acidulated and extractable phosphate. Fert Res 16:179–194

    CAS  Google Scholar 

  • Helliker BR, Ehleringer JR (2000) Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses. Proc Natl Acad Sci USA 97:7894–7898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hood-Nowotny R (2008) Isotope labelling methods for evaluating contributions of organic sources to plant nutrition. In: Guidelines on nitrogen management in agricultural systems. Training course series 29. International Atomic Energy Agency, Vienna, pp 182–203

    Google Scholar 

  • Hu Y, Vanhaecke F, Moens L, Dams R, del Castilho P, Japenga J (1998) Determination of the aqua regia soluble content of rare earth elements in fertilizer, animal fodder phosphate and manure samples using inductively coupled plasma mass spectrometry. Anal Chim Acta 373:95–105

    CAS  Google Scholar 

  • Jaisi DP, Blake RE (2010) Tracing sources and cycling of phosphorus in Peu Margin sediments using oxygen isotopes in authigenic and detrital phosphates. Geochim Cosmochim Acta 74:3199–3212

    CAS  Google Scholar 

  • Jaisi DP, Blake RE, Kukkadapu R (2010) Fractionation of oxygen isotopes in phosphate during its interactions with iron oxides. Geochim Cosmochim Acta 47:1309–1319

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of P-32 over defined distances. New Phytol 120:509–516

    CAS  Google Scholar 

  • Jakobsen I, Chen BD, Munkvold L, Lundsgaard T, Zhu YG (2005) Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant Cell Environ 28:928–938

    CAS  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488

    CAS  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163–176

    CAS  Google Scholar 

  • Jansa J, Finlay R, Wallander H, Smith FA, Smith SE (2011) Role of mycorrhizal symbioses in phosphorus cycling. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_6

    Google Scholar 

  • Jayachandran K, Schwab AP, Hetrick BAD (1992a) Partitioning dissolved inorganic and organic phosphorus using acidified molybdate and isobutanol. Soil Sci Soc Am J 56:762–765

    CAS  Google Scholar 

  • Jayachandran K, Schwab AP, Hetrick BAD (1992b) Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 24:897–903

    CAS  Google Scholar 

  • Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertilizer nitrogen and soil-nitrogen – the so-called priming effect. J Soil Sci 36:425–444

    CAS  Google Scholar 

  • Joner EJ, Jakobsen I (1995) Uptake of 32P from labelled organic matter by mycorrhizal and non-mycorrhizal subterranean clover (Trifolium subterraneum l.). Plant Soil 172:221–227

    CAS  Google Scholar 

  • Joner EJ, van Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:199–210

    CAS  Google Scholar 

  • Kapoor KK, Haider K (1982) Mineralization and plant availability of phosphorus from biomass of hyaline and melanic fungi. Soil Sci Soc Am J 46:953–957

    CAS  Google Scholar 

  • Kato N, Zapata F, Axmann H (1995) Evaluation of the agronomic effectiveness of natural and partially acidulated phosphate rocks in several soils using P-32 isotopic dilution techniques. Fert Res 41:235–242

    Google Scholar 

  • Kok B, Varner JE (1967) Extraterrestrial life detection based on oxygen isotope exchange reactions. Science 155:1110–1112

    CAS  PubMed  Google Scholar 

  • Kolodny Y, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatites. 1. Fish bone apatite – rechecking the rules of the game. Earth Planet Sci Lett 64:398–404

    CAS  Google Scholar 

  • Kucey RMN, Bole JB (1984) Availability of phosphorus from 17 rock phosphates in moderately and weakly acidic soils as determined by P-32 dilution, A-value, and total P uptake methods. Soil Sci 138:180–188

    CAS  Google Scholar 

  • Larsen S (1952) The use of P-32 in studies on the uptake of phosphorus by plants. Plant Soil 4:1–10

    CAS  Google Scholar 

  • Larsen S, Middelboe V, Johansen HS (1989) The fate of O-18 labeled phosphate in soil plant systems. Plant Soil 117:143–145

    CAS  Google Scholar 

  • Lécuyer C, Grandjean P, Sheppard SMF (1999) Oxygen isotope exchange between dissolved phosphate and water at temperature ≤135°C: inorganic versus biological fractionations. Geochim Cosmochim Acta 63:855–862

    Google Scholar 

  • Liang Y, Blake RE (2006) Oxygen isotope signature of Pi regeneration from organic compounds by phosphomonoesterases and photooxidation. Geochim Cosmochim Acta 70:3957–3969

    CAS  Google Scholar 

  • Liang Y, Blake RE (2007) Oxygen isotope fractionation between apatite and aqueous-phase phosphate: 20–45°C. Chem Geol 238:121–133

    CAS  Google Scholar 

  • Liang YH, Blake RE (2009) Compound- and enzyme-specific phosphodiester hydrolysis mechanisms revealed by delta O-18 of dissolved inorganic phosphate: implications for marine P cycling. Geochim Cosmochim Acta 73:3782–3794

    CAS  Google Scholar 

  • Longinelli A (1965) The oxygen isotopic composition of orthophosphate from shells of living marine organisms. Nature 207:716–719

    CAS  Google Scholar 

  • Longinelli A, Nuti S (1973) Revised phosphate-water isotopic temperature scale. Earth Planet Sci Lett 19:373–376

    CAS  Google Scholar 

  • López-Hernández D, Brossard M, Frossard E (1998) P-isotopic exchangeable values in relation to Po mineralization in soils with very low P-sorbing capacities. Soil Biol Biochem 30:1663–1670

    Google Scholar 

  • Luz B, Kolodny Y (1985) Oxygen isotope varioations in phosphate of biogenic apatites. 4. Mammal teeth and bones. Earth Planet Sci Lett 75:29–36

    CAS  Google Scholar 

  • Maertens E, Thijs A, Smolders E, Degryse F, Cong PT, Merckx R (2004) An anion resin membrane technique to overcome detection limits of isotopically exchanged P in P-sorbing soils. Eur J Soil Sci 55:63–69

    CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14:1140–1148

    CAS  PubMed  Google Scholar 

  • Martin JK, Cartwright B (1971) The comparative plant availability of phosphorus-32 myo inositol hexaphosphate and phosphorus-32 mono basic potassium phosphate added to soils. Commun Soil Sci Plant Anal 2:375–381

    CAS  Google Scholar 

  • Mattingly GEG (1975) Labile phosphate in soils. Soil Sci 119:369–375

    CAS  Google Scholar 

  • McAuliffe CD, Hall NS, Dean LA, Hendricks SB (1947) Exchange reactions between phosphates and soils: hydroxylic surfaces of soil minerals. Soil Sci Soc Am Proc 12:119–123

    Google Scholar 

  • McBeath TM, Lombi E, McLaughlin MJ, Bünemann EK (2009) Exchangeability of orthophosphate and pyrophosphate in soils: a double isotopic labelling study. Plant Soil 314:243–252

    CAS  Google Scholar 

  • McLaughlin MJ, Alston AM (1986) The relative contribution of plant residues and fertilizer to the phosphorus-nutrition of wheat in a pasture cereal system. Aust J Soil Res 24:517–526

    Google Scholar 

  • McLaughlin MJ, Alston AM, Martin JK (1988) Phosphorus cycling in wheat-pasture rotations. I. The source of phosphorus taken up by wheat. Aust J Soil Res 26:323–331

    Google Scholar 

  • McLaughlin K, Cade-Menun BJ, Paytan A (2006a) The oxygen isotopic composition of phosphate in Elkhorn Slough, California: a tracer for phosphate sources. Estuar Coast Shelf Sci 70:499–506

    Google Scholar 

  • McLaughlin K, Kendall C, Silva SR, Young M, Paytan A (2006b) Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay. California. J Geophys Res 111:G03003. doi:10.1029/2005JG000079

    Google Scholar 

  • Mikkelsen BL, Rosendahl S, Jakobsen I (2008) Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol 180:890–898

    PubMed  Google Scholar 

  • Mizota C, Domon Y, Yoshida N (1992) Oxygen isotope composition of natural phosphates from volcanic ash soils of the great rift-valley of Africa and East Java, Indonesia. Geoderma 53:111–123

    CAS  Google Scholar 

  • Morel C (2002) Caractérisation de la phytodisponibilité du phosphore du sol par la modélisation du transfert des ions phosphates entre le sol et la solution. Mémoire préparé en vue de l’obtention du diplôme d’habilitation à diriger des recherches. INRA-Bordeaux et Institut National Polytechnique de Lorraine (in French)

    Google Scholar 

  • Morel C, Fardeau JC (1989a) Native soil and fresh fertilizer phosphorus uptake as affected by rate of applications and P fertilizers. Plant Soil 115:123–128

    CAS  Google Scholar 

  • Morel C, Fardeau JC (1989b) The uptake by crops of fresh and residual phosphatic fertilizers by simultaneous measurements with 32P and 33P. Int J Appl Radiat Isot 40:273–278

    CAS  Google Scholar 

  • Morel C, Plenchette C (1994) Is the isotopically exchangeable phosphate of a loamy soil the plant available P. Plant Soil 158:287–297

    CAS  Google Scholar 

  • Morel C, Tiessen H, Moir JO, Stewart JWB (1994) Phosphorus transformations and availability under cropping and fertilization assessed by isotopic exchange. Soil Sci Soc Am J 58:1439–1445

    CAS  Google Scholar 

  • Morel C, Tunney P, Plenet D, Pellerin S (2000) Transfer of phosphate ions between soil and solution: perspectives in soil testing. J Environ Qual 29:50–59

    CAS  Google Scholar 

  • Mosse B, Hayman DS, Arnold DJ (1973) Plant growth responses to vesicular-arbuscular mycorrhiza. V. Phosphate uptake by three plant species from P-deficient soils labelled with 32P. New Phytol 72:809–815

    CAS  Google Scholar 

  • Nagy R, Karandashov V, Chague W, Kalinkevich K, Tamasloukht M, Xu GH, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    CAS  PubMed  Google Scholar 

  • Nelson WL, Krantz BA, Colwell WE, Woltz WG, Hawkins A, Dean LA, MacKenzie AJ, Rubins EJ (1947) Application of radioactive tracer technique to studies of phosphatic fertilizer utilization by crops: field experiments. Soil Sci Soc Am Proc 12:112–118

    Google Scholar 

  • Nemery J, Garnier J, Morel C (2005) Phosphorus budget in the Marne Watershed (France): urban vs. diffuse sources, dissolved vs. particulate forms. Biochemistry 72:35–66

    CAS  Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots – an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    CAS  PubMed  Google Scholar 

  • Nielsen JS, Joner EJ, Declerck S, Olsson S, Jakobsen I (2002) Phospho-imaging as a tool for visualization and noninvasive measurement of p transport dynamics in arbuscular mycorrhizas. New Phytol 154:809–819

    CAS  Google Scholar 

  • Oberson A, Tagmann HU, Langmeier M, Dubois D, Mäder P, Frossard E (2010) Fresh and residual phosphorus uptake by ryegrass from soils with different fertilization histories. Plant Soil 334:391–407

    Google Scholar 

  • Oberson A, Pypers P, Bünemann EK, Frossard E (2011) Management impacts on biological phosphorus cycling in cropped soils. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_17

    Google Scholar 

  • Oehl F, Oberson A, Sinaj S, Frossard E (2001a) Organic phosphorus mineralisation studies using isotopic dilution techniques. Soil Sci Soc Am J 65:780–787

    CAS  Google Scholar 

  • Oehl F, Oberson A, Probst M, Fliessbach A, Roth HR, Frossard E (2001b) Kinetics of microbial phosphorus uptake in cultivated soils. Biol Fertil Soils 34:31–41

    Google Scholar 

  • Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal phosphorus mineralisation in soils under different farming systems. Soil Biol Biochem 36:667–675

    CAS  Google Scholar 

  • Otero N, Vitoria L, Soler A, Canals A (2005) Fertiliser characterisation: major, trace and rare earth elements. Appl Geochem 20:1473–1488

    CAS  Google Scholar 

  • Paytan A, Kolodny Y, Neori A, Luz B (2002) Rapid biologically mediated oxygen isotope exchange between water and phosphate. Global Biogeochem Cycles 16(1):1013. doi:10.1029/2001GB001430

    Google Scholar 

  • Pons WA, Guthrie JD (1946) Determination of inorganic phosphorus in plant materials. Ind Eng Chem Anal Ed 18:184–186

    CAS  Google Scholar 

  • Powell CL (1975) Plant growth responses to vesicular-arbuscular mycorrhiza. VIII. Uptake of p by onion and clover infected with different endogone spore types in 32P labelled soil. New Phytol 75:563–566

    Google Scholar 

  • Probert ME, Larsen S (1972) The kinetics of heterogeneous isotopic exchange. J Soil Sci 23:76–81

    Google Scholar 

  • Pypers P, Van Loon L, Diels J, Abaidoo R, Smolders E, Merckx R (2006) Plant-available P for maize and cowpea in P-deficient soils from the Nigerian Northern Guinea Savanna – comparison of E- and L-values. Plant Soil 283:251–264

    CAS  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    CAS  Google Scholar 

  • Russell RS, Russell EW, Marais PG (1957) Factors affecting the ability of plants to absorb phosphate from soils. 1. The relationship between labile phosphate and absorption. J Soil Sci 8:248–267

    CAS  Google Scholar 

  • Salcedo IH, Bertino F, Sampaio EVSB (1991) Reactivity of phosphorus in Northeastern Brazilian soils assessed by isotopic dilution. Soil Sci Soc Am J 55:140–145

    CAS  Google Scholar 

  • Schneider A, Morel C (2000) Relationship between the isotopically exchangeable and resin-extractable phosphate of deficient to heavily fertilized soil. Eur J Soil Sci 51:709–715

    Google Scholar 

  • Schweiger PF, Jakobsen I (1999) Direct measurement of arbuscular mycorrhizal phosphorus uptake into field-grown winter wheat. Agron J 91:998–1002

    Google Scholar 

  • Schweiger P, Thingstrup I, Jakobsen I (1999) Comparison of two test systems for measuring plant phosphorus uptake via arbuscular mycorrhizal fungi. Mycorrhiza 8:207–213

    CAS  Google Scholar 

  • Schwertmann U, Cornell R (2000) Iron oxides in the laboratory. Preparation and characterization, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Sinaj S, Traore O, Frossard E (2002) Effect of compost and soil properties on the availability of composts phosphate for white clover (Trifolium repens L.). Nutr Cycl Agroecosyst 62:89–102

    CAS  Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (am) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Google Scholar 

  • Spinks JWT, Barber SA (1947) Studies of fertilizer uptake using radioactive phosphorus. Sci Agric 27:145–156

    CAS  Google Scholar 

  • Stroia C, Morel C, Jouany C (2007) Dynamics of diffusive soil phosphorus in two grassland experiments determined both in field and laboratory conditions. Agric Ecosyst Environ 119:60–74

    CAS  Google Scholar 

  • Talibudeen O (1957) Isotopically exchangeable phosphorus in soils. II. Factors influencing the estimation of “labile” phosphorus. J Soil Sci 8:86–96

    CAS  Google Scholar 

  • Tamburini F, Bernasconi SM, Angert A, Weiner T, Frossard E (2010) A method for the analysis of the δ18O of inorganic phosphate in soils extracted with HCl. Eur J Soil Sci (in press) doi: 10.1111/j.1365-2389.2010.01290.x

  • Tan KH (1993) Principles of soil chemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Thibaud MC, Morel C, Fardeau JC (1988) Contribution of phosphorus issued from crop residues to plant nutrition. Soil Sci Plant Nutr 34:481–491

    CAS  Google Scholar 

  • Torrent J (1987) Interactions between phosphate and iron oxide. Adv Geoecol 30:321–344

    Google Scholar 

  • Truong B, Pichot J (1976) Influence du phosphore des graines de la plante test sur la détermination du phosphore isotopiquement diluable (valeur L). Agron Trop 31:379–385

    Google Scholar 

  • Voets L, de la Providencia IE, Fernandez K, IJdo M, Cranenbrouck S, Declerck S (2009) Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19:347–356

    PubMed  Google Scholar 

  • Walbridge MR, Vitousek PM (1987) Phosphorus mineralization potentials in acid organic soils: processes affecting 32PO4-isotope dilution measurements. Soil Biol Biochem 19:709–717

    Google Scholar 

  • Wang B, Funakoshi DM, Dalpe Y, Hamel C (2002) Phosphorus-32 absorption and translocation to host plants by arbuscular mycorrhizal fungi at low root-zone temperature. Mycorrhiza 12:93–96

    PubMed  Google Scholar 

  • White JL, Fried M, Oherogge AJ (1949) Study of the utlization of phosphorus in green manure crops by the succeeding crop, using radioactive phosphorus. Agron J 41:174–175

    CAS  Google Scholar 

  • Wiedemann-Bidlack FB, Colman AS, Fogel ML (2008) Phosphate oxygen isotope analysis on microsamples of bioapatite: removal of organic contamination and minimization of sample size. Rapid Commun Mass Spectrom 22:1807–1816

    CAS  PubMed  Google Scholar 

  • Wiklander L (1950) Kinetics of phosphate exchange in soils. Ann R Agric Coll Sweden 17:407–424

    CAS  Google Scholar 

  • Winter ERS, Carlton M, Briscoe HVA (1940) The interchange of heavy oxygen between water and inorganic oxyions. J Chem Soc 32:131–138

    Google Scholar 

  • Wolf AM, Baker DE, Pionke HB (1986) The measurement of labile phosphorus by the isotopic dilution and anion resin methods. Soil Sci 141:60–70

    CAS  Google Scholar 

  • Young MB, McLaughlin K, Kendall C, Stringfellow W, Rollog M, Elsbury K, Donald E, Paytan A (2009) Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems. Environ Sci Technol 43:5190–5196

    CAS  PubMed  Google Scholar 

  • Zapata F, Axmann H (1995) P-32 isotopic techniques for evaluating the agronomic effectiveness of rock phosphate materials. Fert Res 41:189–195

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the remarks made by the two reviewers who helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Frossard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Frossard, E. et al. (2011). The Use of Tracers to Investigate Phosphate Cycling in Soil–Plant Systems. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_3

Download citation

Publish with us

Policies and ethics