Skip to main content

Scale Effect in Mechanical Properties and Tribology

  • Chapter
  • First Online:

Abstract

A model, which explains scale effects in mechanical properties and tribology is presented. Mechanical properties are scale dependent based on the strain gradient plasticity and the effect of dislocation-assisted sliding. Both single asperity and multiple asperity contacts are considered. The relevant scaling length is the nominal contact length – contact diameter for a single-asperity contact, and scan length for multiple-asperity contacts. For multiple asperity contacts, based on an empirical power-rule for scale dependence of roughness, contact parameters are calculated. The effect of load on the contact parameters and the coefficient of friction is also considered. During sliding, adhesion and two- and three-body deformation, as well as ratchet mechanism, contribute to the dry friction force. These components of the friction force depend on the relevant real areas of contact (dependent on roughness and mechanical properties), average asperity slope, number of trapped particles, and shear strength during sliding. Scale dependence of the components of the coefficient of friction is studied. A scale dependent transition index, which is responsible for transition from predominantly elastic adhesion to plastic deformation has been proposed. Scale dependence of the wet friction, wear, and interface temperature has been also analyzed. The proposed model is used to explain the trends in the experimental data for various materials at nanoscale and microscale, which indicate that nanoscale values of coefficient of friction are lower than the microscale values due to an increase of the three-body deformation and transition from elastic adhesive contact to plastic deformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Bhushan, Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton, 1999)

    Google Scholar 

  2. B. Bhushan, Nanoscale tribophysics and tribomechanics, Wear 225–229, 465–492 (1999)

    Article  Google Scholar 

  3. B. Bhushan, Springer Handbook of Nanotechnology (Springer, Berlin, 2004)

    Book  Google Scholar 

  4. B. Bhushan, J.N. Israelachvili, U. Landman, Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)

    Article  Google Scholar 

  5. J. Ruan, B. Bhushan, Atomic-scale friction measurements using friction force microscopy: Part I – General principles and new measurement technique, ASME J. Tribol. 116, 378–388 (1994)

    Article  Google Scholar 

  6. B. Bhushan, A.V. Kulkarni, Effect of normal load on microscale friction measurements, Thin Solid Films 278, 49–56 (1996), Erratum: 293, 333

    Article  Google Scholar 

  7. R.W. Carpick, N. Agrait, D.F. Ogletree, M. Salmeron, Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope, J. Vac. Sci. Technol. B 14, 1289–1295 (1996)

    Article  Google Scholar 

  8. U.D. Schwarz, O. Zwörner, P. Köster, R. Wiesendanger, Quantitative analysis of the frictional properties of solid materials at low loads. 1. Carbon compounds, Phys. Rev. B 56, 6987–6996 (1997)

    Article  Google Scholar 

  9. B. Bhushan, S. Sundararajan, Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy, Acta Mater. 46, 3793–3804 (1998)

    Article  Google Scholar 

  10. B. Bhushan, C. Dandavate, Thin-film friction and adhesion studies using atomic force microscopy, J. Appl. Phys. 87, 1201–1210 (2000)

    Article  Google Scholar 

  11. H. Liu, B. Bhushan, Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vac. Sci. Technol. A 21, 1538 (2003)

    Google Scholar 

  12. B. Bhushan, H. Liu, S.M. Hsu, Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects, ASME J. Tribol. 126, 583–590 (2004)

    Article  Google Scholar 

  13. A.W. Homola, J.N. Israelachvili, P.M. McGuiggan, M.L. Gee, Fundamental experimental studies in tribology: The transition from interfacial friction of undamaged molecularly smooth surfaces to normal friction with wear, Wear 136, 65–83 (1990)

    Article  Google Scholar 

  14. V.N. Koinkar, B. Bhushan, Scanning and transmission electron microscopies of single-crystal silicon microworn/machined using atomic force microscopy, J. Mater. Res. 12, 3219–3224 (1997)

    Article  Google Scholar 

  15. X. Zhao, B. Bhushan, Material removal mechanisms of single-crystal silicon on nanoscale and at ultralow loads, Wear 223, 66–78 (1998)

    Article  Google Scholar 

  16. B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  17. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  18. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  19. J.W. Hutchinson, Plasticity at the micron scale, Int. J. Solids Struct. 37, 225–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Bhushan, M. Nosonovsky, Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (microslip), Acta Mater. 51, 4331–4345 (2003)

    Article  Google Scholar 

  21. B. Bhushan, M. Nosonovsky, Comprehensive model for scale effects in friction due to adhesion and two- and three-body deformation (plowing), Acta Mater. 52, 2461–2474 (2004)

    Article  Google Scholar 

  22. B. Bhushan, M. Nosonovsky, Scale effects in dry and wet friction, wear, and interface temperature, Nanotechnology 15, 749–761 (2004)

    Article  Google Scholar 

  23. M. Nosonovsky, B. Bhushan, Scale effect in dry friction during multiple asperity contact, ASME J. Tribol. 127, 37–46 (2005)

    Article  Google Scholar 

  24. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism-based strain-gradient plasticity – I. theory, J. Mech. Phys. Solids 47, 1239–1263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Huang, H. Gao, W.D. Nix, J.W. Hutchinson, Mechanism-based strain-gradient plasticity – II. analysis, J. Mech. Phys. Solids 48, 99–128 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Z.P. Bazant, Scaling of dislocation-based strain-gradient plasticity, J. Mech. Phys. Solids 50, 435–448 (2002)

    Article  MATH  Google Scholar 

  27. J. Friedel, Dislocations (Pergamon, New York, 1964)

    MATH  Google Scholar 

  28. J. Weertman, J.R. Weertman, Elementary Dislocations Theory (MacMillan, New York, 1966)

    Google Scholar 

  29. B. Bhushan, A.V. Koinkar, Nanoindentation hardness measurements using atomic force microscopy, Appl. Phys. Lett. 64, 1653–1655 (1994)

    Article  Google Scholar 

  30. B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek, Nano/picoindentation measurement using a capacitive transducer system in atomic force microscopy, Philos. Mag. 74, 1117–1128 (1996)

    Article  Google Scholar 

  31. A.V. Kulkarni, B. Bhushan, Nanoscale mechanical property measurements using modified atomic force microscopy, Thin Solid Films 290/291, 206–210 (1996)

    Article  Google Scholar 

  32. K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area of depth-sensing indentation experiments, J. Mater. Res. 13, 1300–1306 (1998)

    Article  Google Scholar 

  33. N. Gane, J.M. Cox, The micro-hardness of metals at very low loads, Philos. Mag. 22, 881–891 (1970)

    Article  Google Scholar 

  34. M.A. Stelmashenko, M.G. Walls, L.M. Brown, Y.V. Miman, Microindentation on W and Mo oriented single crystal an SEM study, Acta Metall. Mater. 41, 2855–2865 (1993)

    Article  Google Scholar 

  35. S. Sundararajan, B. Bhushan, Development of AFM-based techniques to measure mechanical properties of nanoscale structures, Sens. Actuators A 101, 338–351 (2002)

    Article  Google Scholar 

  36. J.J. Weertman, Dislocations moving uniformly on the interface between isotropic media of different elastic properties, J. Mech. Phys. Solids 11, 197–204 (1963)

    Article  Google Scholar 

  37. K.L. Johnson, Adhesion and friction between a smooth elastic spherical asperity and a plane surface, Proc. R. Soc. Lond. A 453, 163–179 (1997)

    Article  Google Scholar 

  38. I.A. Polonsky, L.M. Keer, Scale effects of elastic-plastic behavior of microscopic asperity contact, ASME J. Tribol. 118, 335–340 (1996)

    Article  Google Scholar 

  39. V.S. Deshpande, A. Needleman, E. Van der Giessen, Discrete dislocation plasticity modeling of short cracks in single crystals, Acta Mater. 51, 1–15 (2003)

    Article  Google Scholar 

  40. R.A. Onions, J.F. Archard, The contact of surfaces having a random structure, J. Phys. D 6, 289–304 (1973)

    Article  Google Scholar 

  41. D.J. Whitehouse, J.F. Archard, The properties of random surfaces of significance in their contact, Proc. R. Soc. Lond. A 316, 97–121 (1970)

    Article  Google Scholar 

  42. J.A. Greenwood, J.B.P. Williamson, Contact of nominally flat surfaces, Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  Google Scholar 

  43. B. Bhushan, Contact mechanics of rough surfaces in tribology: Single asperity contact, Appl. Mech. Rev. 49, 275–298 (1996)

    Article  Google Scholar 

  44. B. Bhushan, Contact mechanics of rough surfaces in tribology: Multiple asperities contact, Tribol. Lett. 4, 1–35 (1998)

    Article  Google Scholar 

  45. B. Bhushan, W. Peng, Contact modeling of multilayered rough surfaces, Appl. Mech. Rev. 55, 435–480 (2002)

    Article  Google Scholar 

  46. A. Majumdar, B. Bhushan, Fractal model of elastic-plastic contact between rough surfaces, ASME J. Tribol. 113, 1–11 (1991)

    Article  Google Scholar 

  47. K.L. Johnson, Contact Mechanics (Clarendon, Oxford, 1985)

    MATH  Google Scholar 

  48. E. Rabinowicz, Friction and Wear of Materials, 2nd edn. (Wiley, New York, 1995)

    Google Scholar 

  49. H.R. Clauser (Ed.), The Encyclopedia of Engineering Materials and Processes (Reinhold, London, 1963)

    Google Scholar 

  50. B. Bhushan, B.K. Gupta, Handbook of Tribology: Materials, Coatings, and Surface Treatments (McGraw-Hill, New York, 1991; Krieger, Malabar, New York, 1997)

    Google Scholar 

  51. B. Bhushan, S. Venkatesan, Mechanical and tribological properties of silicon for micromechanical applications: A review, Adv. Inf. Storage Syst. 5, 211–239 (1993)

    Google Scholar 

  52. INSPEC, Properties of Silicon, EMIS Data Rev. Ser., Vol. 4 (INSPEC Institution of Electrical Engineers, London, 2002), see also, MEMS Materials Database, http://www.memsnet.org/material/

    Google Scholar 

  53. J.E. Field (Ed.), The Properties of Natural and Synthetic Diamond (Academic, London, 1992)

    Google Scholar 

  54. B. Bhushan, Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments, Diam. Relat. Mater. 8, 1985–2015 (1999)

    Article  Google Scholar 

  55. National Carbon Comp., The Industrial Graphite Engineering Handbook (National Carbon Company, New York, 1959)

    Google Scholar 

  56. C. Bernhardt, Particle Size Analysis (Chapman Hall, London, 1994)

    Google Scholar 

  57. J.L. Devoro, Probability and Statistics for Engineering and the Sciences (Duxbury, New York, 1995)

    Google Scholar 

  58. B.S. Everitt, The Cambridge Dictionary of Statistics (Cambridge university Press, Cambridge, 1998)

    MATH  Google Scholar 

  59. D. Zwillinger, S. Kokoska, CRC Standard Probability and Statistics Tables and Formulas (CRC, Boca Raton, 2000)

    Google Scholar 

  60. S. Wolfram, The Mathematica Book, 5th edn. (Wolfram Media, Champaign, 2003)

    Google Scholar 

  61. J.S. Bendet, A.G. Piersol, Engineering Applications of Correlation and Spectral Analysis, 2nd edn. (Wiley, New York, 1986)

    Google Scholar 

  62. G. Herdan, Small Particle Statistics (Butterworth, London, 1960)

    Google Scholar 

  63. R.D. Cadle, Particle Size – Theory and Industrial Applications (Reinhold, New York, 1965)

    Google Scholar 

  64. Y. Xie, B. Bhushan, Effect of particle size, polishing pad and contact pressure in free abrasive polishing, Wear 200, 281–295 (1996)

    Article  Google Scholar 

  65. J.L. Xuan, H.S. Cheng, R.J. Miller, Generation of submicrometer particles in dry sliding, ASME J. Tribol. 112, 664–691 (1990)

    Article  Google Scholar 

  66. M. Mizumoto, K. Kato, Wear Particles: From the Cradle to the Grave, ed. by D. Dowson, C.M. Taylor, T.H.C. Childs, M. Godet, G. Dalmaz (Elsevier, Amsterdam, 1992), pp. 523–530

    Google Scholar 

  67. A.S. Shanbhag, H.O. Bailey, D.S. Hwang, C.W. Cha, N.G. Eror, H.E. Rubash, Quantitative analysis of ultrahigh molecular weight polyethylene (UHMWPE) wear debris associated with total knee replacements, J. Biomed. Mater. Res. 53, 100–110 (2000)

    Article  Google Scholar 

  68. T.M. Hunt, Handbook of Wear Debris Analysis and Particle Detection in Liquids (Elsevier Applied Science, London, 1993)

    Google Scholar 

  69. W.W. Seifert, V.C. Westcott, A method for the study of wear particles in lubricating oil, Wear 21, 27–42 (1972)

    Article  Google Scholar 

  70. D. Scott, V.C. Westcott, Predictive maintenance by ferrography, Wear 44, 173–182 (1977)

    Article  Google Scholar 

  71. D.P. Anderson, Wear Particle Atlas, 2nd edn. (Spectro Inc. Industrial Tribology Systems, Littleton, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B., Nosonovsky, M. (2011). Scale Effect in Mechanical Properties and Tribology. In: Bhushan, B. (eds) Nanotribology and Nanomechanics II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15263-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15263-4_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15262-7

  • Online ISBN: 978-3-642-15263-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics