Skip to main content

Imaging Molecular Physiology in Cells Using FRET-Based Fluorescent Nanosensors

  • Chapter
  • First Online:
Optical Fluorescence Microscopy

Abstract

The multiparameter nature of fluorescence microscopy makes it a powerful tool for the investigation of cellular function. Förster resonance energy transfer (FRET) allows the study of functional mechanisms, i.e., protein interactions, modifications, and conformational changes, at the molecular level. Of the different FRET microscopy techniques, fluorescence lifetime imaging (FLIM) provides a quantitative, robust, and sensitive read-out in living cells. The different consequences of the occurrence of FRET and the different forms of FRET bioassays are reviewed here. However, knowledge of isolated biochemical events in cells is not sufficient to understand the working of the highly interconnected cellular pathways. The expansion of the detection principle of FRET could uncover correlations between different components and events. The current focus is on the development of multipoint FRET assays that provide high-detail overviews of functional, structural, and organizational aspects of cellular machine components from which rules and causalities can be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abankwa D, Vogel H (2007) A FRET map of membrane anchors suggests distinct microdomains of heterotrimeric G proteins. J Cell Sci 120:2953–2962

    Article  PubMed  CAS  Google Scholar 

  • Allen MD, Zhang J (2008) A tunable FRET circuit for engineering fluorescent biosensors. Angew Chem Int Ed Engl 47:500–502

    Article  PubMed  CAS  Google Scholar 

  • Beutler M, Makrogianneli K, Vermeij RJ, Keppler M, Ng T, Jovin TM, Heintzmann R (2008) satFRET: estimation of Forster resonance energy transfer by acceptor saturation. Eur Biophys J 38:69–82

    Article  PubMed  CAS  Google Scholar 

  • Böhmer M, Enderlein J (2003) Fluorescence spectroscopy of single molecules under ambient conditions: methodology and technology. Chemphyschem 4:793–808

    Article  PubMed  Google Scholar 

  • Bruchez MP (2005) Turning all the lights on: quantum dots in cellular assays. Curr Opin Chem Biol 9:533–537

    Article  PubMed  CAS  Google Scholar 

  • Bunt G, Wouters FS (2004) Visualization of molecular activities inside living cells with fluorescent labels. Int Rev Cytol 237:205–277

    Article  PubMed  CAS  Google Scholar 

  • Buurman EP, Sanders R, Draaijer A, Gerritsen HC, Vanveen JJF, Houpt PM, Levine YK (1992) Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14:155–159

    Article  Google Scholar 

  • Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882

    Article  PubMed  CAS  Google Scholar 

  • Clegg RM (1996) Fluorescence resonance energy transfer. In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, London

    Google Scholar 

  • Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16

    Article  PubMed  CAS  Google Scholar 

  • Elder AD, Domin A, Kaminski Schierle GS, Lindon C, Pines J, Esposito A, Kaminski CF (2009) A quantitative protocol for dynamic measurements of protein interactions by Forster resonance energy transfer-sensitized fluorescence emission. J R Soc Interface 6:S59–S81

    Article  CAS  Google Scholar 

  • Esposito A (2006) Molecular and cellular quantitative microscopy. Thesis, Utrecht University, The Netherlands and Göttingen University, Germany

    Google Scholar 

  • Esposito A, Wouters FS (2004) Fluorescence lifetime imaging microscopy. In: Bonifacino JS, Dasso M, Harford JB, Lippincott-Schwartz J, Yamada KM (eds) Current protocols in cell biology. Wiley, London

    Google Scholar 

  • Esposito A, Gerritsen HC, Wouters FS (2005a) Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis. Biophys J 89:4286–4299

    Article  PubMed  CAS  Google Scholar 

  • Esposito A, Oggier T, Gerritsen HC, Lustenberger F, Wouters FS (2005b) All-solid-state lock-in imaging for wide-field fluorescence lifetime sensing. Opt Express 13:9812–9821

    Article  PubMed  CAS  Google Scholar 

  • Esposito A, Gerritsen HC, Oggier T, Lustenberger F, Wouters FS (2006) Innovating lifetime microscopy: a compact and simple tool for life sciences, screening, and diagnostics. J Biomed Opt 11:34016

    Article  PubMed  Google Scholar 

  • Esposito A, Dohm CP, Bahr M, Wouters FS (2007a) Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening. Mol Cell Proteomics 6:1446–1454

    Article  PubMed  CAS  Google Scholar 

  • Esposito A, Gerritsen HC, Wouters FS (2007b) Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed. J Opt Soc Am A Opt Image Sci Vis 24:3261–3273

    Article  PubMed  Google Scholar 

  • Esposito A, Gralle M, Dani MA, Lange D, Wouters FS (2008) pHlameleons: a family of FRET-based protein sensors for quantitative pH imaging. Biochemistry 47(49):13115–13126

    Article  PubMed  CAS  Google Scholar 

  • Evers TH, van Dongen EM, Faesen AC, Meijer EW, Merkx M (2006) Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Biochemistry 45:13183–13192

    Article  PubMed  CAS  Google Scholar 

  • Fazekas Z, Petras M, Fabian A, Palyi-Krekk Z, Nagy P, Damjanovich S, Vereb G, Szollosi J (2008) Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy. Cytom A 73:209–219

    Article  Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2:55–75

    Article  Google Scholar 

  • Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry – Istanbul lectures, Part III. Academic, New York

    Google Scholar 

  • Galperin E, Verkhusha VV, Sorkin A (2004) Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nat Methods 1:209–217

    Article  PubMed  CAS  Google Scholar 

  • Ganesan S, Ameer-Beg SM, Ng TT, Vojnovic B, Wouters FS (2006) A dark yellow fluorescent protein (YFP)-based resonance energy-accepting chromoprotein (REACh) for Forster resonance energy transfer with GFP. Proc Natl Acad Sci USA 103:4089–4094

    Article  PubMed  CAS  Google Scholar 

  • Ghiggino KP, Harris MR, Spizzirri PG (1992) Fluorescence lifetime measurements using a novel fiberoptic laser scanning confocal microscope. Rev Sci Instrum 63:2999–3002

    Article  CAS  Google Scholar 

  • Grant DM, Zhang W, McGhee EJ, Bunney TD, Talbot CB, Kumar S, Munro I, Dunsby C, Neil MA, Katan M, French PM (2008) Multiplexed FRET to image multiple signaling events in live cells. Biophys J 95:L69–L71

    Article  PubMed  CAS  Google Scholar 

  • Hänninen PE, Lehtelä L, Hell SW (1996) Two- and multiphoton excitation of conjugate dyes with continuous wave lasers. Opt Commun 130:29–33

    Article  Google Scholar 

  • Harpur AG, Wouters FS, Bastiaens PI (2001) Imaging FRET between spectrally similar GFP molecules in single cells. Nat Biotechnol 19:167–169

    Article  PubMed  CAS  Google Scholar 

  • Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  PubMed  CAS  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Jones J, Heim R, Hare E, Stack J, Pollok BA (2000) Development and application of a GFP-FRET intracellular caspase assay for drug screening. J Biomol Screen 5:307–318

    Article  PubMed  CAS  Google Scholar 

  • Jose M, Nair DK, Reissner C, Hartig R, Zuschratter W (2007) Photophysics of Clomeleon by FLIM: discriminating excited state reactions along neuronal development. Biophys J 92:2237–2254

    Article  PubMed  CAS  Google Scholar 

  • Jovin TM, Arndt-Jovin DJ (1989) Luminescence digital imaging microscopy. Annu Rev Biophys Biophys Chem 18:271–308

    Article  PubMed  CAS  Google Scholar 

  • Kogure T, Kawano H, Abe Y, Miyawaki A (2008) Fluorescence imaging using a fluorescent protein with a large Stokes shift. Methods 45:223–226

    Article  PubMed  CAS  Google Scholar 

  • Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49:141–164

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  • Lakowicz JR, Berndt KW (1991) Lifetime-selective fluorescence imaging using an Rf phase-sensitive camera. Rev Sci Instrum 62:1727–1734

    Article  CAS  Google Scholar 

  • Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol (Suppl): S7–14

    Google Scholar 

  • Ma'ayan A, Iyengar R (2006) From components to regulatory motifs in signalling networks. Brief Funct Genomic Proteomic 5:57–61

    Article  PubMed  Google Scholar 

  • Mekler VM (1994) A photochemical technique to enhance sensitivity of detection of fluorescence resonance energy transfer. Photochem Photobiol 59:615–620

    CAS  Google Scholar 

  • Mekler VM, Averbakh AZ, Sudarikov AB, Kharitonova OV (1997) Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IgM with streptavidin and aggregates of concanavalin A. J Photochem Photobiol B 40:278–287

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TW, Chudakov DM (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4:555–557

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AC, Wall JE, Murray JG, Morgan CG (2002a) Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging. J Microsc 206:225–232

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AC, Wall JE, Murray JG, Morgan CG (2002b) Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera. J Microsc 206:233–238

    Article  PubMed  CAS  Google Scholar 

  • Mitra RD, Silva CM, Youvan DC (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173:13–17

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96:2135–2140

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  PubMed  CAS  Google Scholar 

  • Netterwald J (2008) Emerging trends in cell biological research. Drug Discovery Dev 10:39

    Google Scholar 

  • Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Ozawa T, Inukai K, Asano T, Umezawa Y (2002) Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat Biotechnol 20:287–294

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  • Shyu YJ, Suarez CD, Hu CD (2008) Visualization of AP-1 NF-kappaB ternary complexes in living cells by using a BiFC-based FRET. Proc Natl Acad Sci USA 105:151–156

    Article  PubMed  CAS  Google Scholar 

  • Singer SJ, Nicholson GL (1972) The fluid mosiac model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Sinha KK, Udgaonkar JB (2007) Dissecting the non-specific and specific components of the initial folding reaction of barstar by multi-site FRET measurements. J Mol Biol 370:385–405

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Panicker RC, Yao SQ (2007) Activity based fingerprinting of proteases using FRET peptides. Biopolymers 88:141–149

    Article  PubMed  CAS  Google Scholar 

  • van Rheenen J, Langeslag M, Jalink K (2004) Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophys J 86:2517–2529

    Article  PubMed  Google Scholar 

  • Vinkenborg JL, Evers TH, Reulen SW, Meijer EW, Merkx M (2007) Enhanced sensitivity of FRET-based protease sensors by redesign of the GFP dimerization interface. Chembiochem 8:1119–1121

    Article  PubMed  CAS  Google Scholar 

  • Wouters FS, Bunt G (2009) Molecular resolution of cellular biochemistry and physiology by FRET/FLIM. In: Diaspro A (ed) Nanoscopy and multidimensional optical fluorescence microscopy. Taylor & Francis, Boca Raton

    Google Scholar 

  • Wouters FS, Verveer PJ, Bastiaens PI (2001) Imaging biochemistry inside cells. Trends Cell Biol 11:203–211

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Simone J, Hewgill D, Siegel R, Lipsky PE, He L (2006) Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe. Cytom A 69:477–486

    Article  Google Scholar 

  • Xu X, Gerard AL, Huang BC, Anderson DC, Payan DG, Luo Y (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res 26:2034–2035

    Article  PubMed  CAS  Google Scholar 

  • Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  PubMed  CAS  Google Scholar 

  • Zapata-Hommer O, Griesbeck O (2003) Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol 3:5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Additional support is acknowledged from the “FLI-Cam” project in the Biophotonics program of the Federal Ministry of Science and Education (BMBF). I thank Alessandro Esposito for the figure of ubiquitinated α-synuclein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred S. Wouters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Wouters, F.S. (2011). Imaging Molecular Physiology in Cells Using FRET-Based Fluorescent Nanosensors. In: Diaspro, A. (eds) Optical Fluorescence Microscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15175-0_8

Download citation

Publish with us

Policies and ethics