Skip to main content

Low Concentration Protein Detection Using Novel SERS Devices

  • Chapter
  • First Online:
Optical Fluorescence Microscopy

Abstract

We report, herein, novel processes of nanofabrication techniques for few molecules detection by generating surface plasmons, thus giving a giant electric field in a controllable and reproducible manner. Surface enhanced Raman scattering (SERS) measurements are performed for different proteins, namely, lysozyme, ribonuclease-B, bovin serum albumin, ferritin, and myoglobin in the temperature range between –65°C and 90°C, using “Device1”, which is fabricated by means of e-beam and electro-plating technique. The calculation shows the possible detection of myoglobin concentration down to attomole. The in-depth analysis even for small conformational changes is performed using 2D Raman correlation analysis and difference Raman analysis in order to gain straightforward understanding of proteins undergoing thermodynamical perturbation. “Device2” is fabricated by e-beam and metal electroless techniques to investigate the Rhodamine 6G (R6G) of different concentrations. Modifying this device by using bimetal (Ag and Au) electroless deposition permits us the further enhancement in Raman signal and better durability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artymiuk PJ, Blake CCF, Rice DW, Wilson KS (1982) The structures of the monoclinic and orthorhombic forms of hen egg–white lysozyme at 6 Å resolution. Acta Crystallogr B Struct Crystallogr Cryst Chem 38:778–783

    Article  Google Scholar 

  • Bulovas A, Talaikyte Z, Niaura G, Kazemekaite M, Marcinkeviciene L, Bachmatova I, Meskys R, Razumas V (2007) Double layered Ag/Au electrode for SERS spectroscopy: preparation and application for adsorption studies of chromophoric compounds. CHEMIJA 10(4):9–15

    Google Scholar 

  • Celej MS, Montich GG, Fidelio GD (2003) Protein stability induced by ligand binding correlates with changes. Protein Sci 12:1496–1506

    Article  PubMed  Google Scholar 

  • Coluccio ML, Das G, Mecarini F, Gentile F, Pujia A, Bava L, Tallerico R, Candeloro P, Liberale C, De Angelis F, Di Fabrizio E (2009) Silver–based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron Eng. doi:10.10161/j.mee.2008.12.061

    Google Scholar 

  • Constantino CJL, Lemma T, Antunes PA, Aroca R (2001) Single–molecule detection using surface–enhanced resonance Raman scattering and Langmuir–Blodgett monolayers. Anal Chem 73(15):3674–3678

    Article  PubMed  CAS  Google Scholar 

  • Daly FP, Brown CW, Kester DR (1972) Sodium and magnesium sulfate ion pairing: evidence from Raman spectroscopy. Biochemistry 76:3664–3668

    CAS  Google Scholar 

  • Gilmanshin R, Beek VB, Callender R (1996) Study of the ribonuclease S–peptide/S–protein complex by means of Raman difference spectroscopy. J Phys Chem 100(41):16754–16760

    Article  CAS  Google Scholar 

  • Grdadolnik J, Marechal Y (2001) Bovin serum albumin observed by infrared spectroscopy. 1. Methodology, structural investigation, and water uptake. Biopolymers 62:40–53

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Harn N, Robbins A, Dougherty R, Middaught CR (2006) Stability of helix–rich proteins at high concentrations. Biochemistry 45(28):8686–8696

    Article  PubMed  CAS  Google Scholar 

  • Haes AJ, Zhao J, Zou S, Own CS, Marks LD, Schatz GC, Duyne RPV (2005) Solution–phase, triangular Ag nanotriangles fabricated by nanosphere lithography. J Phys Chem B 109(22):11158–11162

    Article  PubMed  CAS  Google Scholar 

  • Haynes CL, McFarland AD, VanDuyne RP (2005) Surface–enhanced Raman spectroscopy. Anal Chem 77(17):338A–346A

    Article  CAS  Google Scholar 

  • Hildebrandt P, Stockburger M (1984) Surface–enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88(24):5935–5944

    Article  CAS  Google Scholar 

  • Imoto T, Johnson LN, North ACT, Phillips DC, Rupley JA (1972) In the enzymes, 7, 3rd edn. Academic Press, New York

    Google Scholar 

  • Jung A, Sippel AE, Grez M, Schfjtz G (1980) Exons encode functional and structural units of chicken lysozyme. Proc Natl Acad Sci USA 77(10):5759–5763

    Article  PubMed  CAS  Google Scholar 

  • Kahl M, Voges E, Kostrewa S, Viets C, Hill W (1998) Periodically structured metallic substrates for SERS. Sens Actuators B Chem 51:285–291

    Article  Google Scholar 

  • Keiderling TA (1993) In: Cark RJH, Hester RE (eds), Biomolecular spectroscopy, Part B. John Wiley and Sons, New York, pp 267–312

    Google Scholar 

  • Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface–enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670

    Article  CAS  Google Scholar 

  • Li T, Chen Z, Johnson JE, Thomas GJ (1990) Structural studies of bean pod mottle virus, capsid, and RNA in crystal and solution states by laser Raman spectroscopy. Biochemistry 29(21):5018–5026

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhou J, Zhang K, Sun C (2007) Gold nanoparticle multilayer films based on surfactant films as a template: preparation, characterization, and application. J Chem Phys 126(9):094706

    Article  PubMed  Google Scholar 

  • Miura, T., Thomas Jr., G.J., (1995). In: Biswas, B.B., Roy, S. (Eds.), Proteins: Structure, Fuction and Engineering, 24. Plenum Press, New York, pp. 55–97.

    Google Scholar 

  • Miura T, Takeuchi H, Harada I (1991) Raman spectroscopic characterization of tryptophan side chains in lysozyme bound to inhibitors: role of the hydrophobic box in the enzymatic function. Biochemistry 30(24):6074–6080

    Article  PubMed  CAS  Google Scholar 

  • Murayama K, Tomida M (2004) Heat–induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry 43(36):11526–11532

    Article  PubMed  CAS  Google Scholar 

  • Nara M, Sakamoto A, Yamamichi J, Tasumi M (2001) Temperature dependence of near–IR excited Raman spectra of crystalline hen egg–white lysozyme. Biopolymers 62:168–172

    Article  PubMed  CAS  Google Scholar 

  • Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface–enhanced Raman scattering. Science 275:1102–1106

    Article  PubMed  CAS  Google Scholar 

  • Noda I, Dowrey AE, Marcott C, Story GM (2000) Generalized Two Dimensional Correlation Spectroscopy. Applied Spectroscopy 54(7):236A–248A

    Article  CAS  Google Scholar 

  • Perney N, Baumberg J, Zoorob M, Charlton M, Mahnkopf S, Netti M (2006) Tuning localized plasmons in nanostructured substrates for surface enhanced Raman scattering. Opt Express 14(2):847–857

    Article  PubMed  CAS  Google Scholar 

  • Precigoux G, Yariv J, Gallois B, Dautant A, Courseille C, d’Estaintot BL (1994) A crystallographic study of heme binding to ferritin. Acta Crystallogr D Biol Crystallogr 50:739–743

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Chiba H, Tashiro H, Ozaki Y (2001) Excitation wavelength–dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5–, 720–, and 1064–nm excitation. J Biomed Opt 6(3):366–370

    Article  PubMed  CAS  Google Scholar 

  • Siamwiza MN, Lord RC, Chen MC (1975) Interpretation of the doublet at 850 and 830 cm–1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry 14(22):4870–4976

    Article  PubMed  CAS  Google Scholar 

  • Spiro TG (1985) Resonance Raman spectroscopy as a probe of heme protein structure and dynamics. Adv Protein Chem 37:111–159

    Article  PubMed  CAS  Google Scholar 

  • Stefanini S, Cavallo S, Wang CQ, Tataseo P, Vecchini P, Giartosio A, Chiancone E (1996) Thermal stability of horse spleen apoferritin and human recombinant H apoferritin. Arch Biochem Biophys 325:58–64

    Article  PubMed  CAS  Google Scholar 

  • Thomas GJ, Prescott B, Day LA (1983) Structure similarity, difference and variability in the filamentous viruses fd, If1, IKe, Pf1 and Xf: investigation by laser Raman spectroscopy. J Mol Biol 165:321–356

    Article  PubMed  CAS  Google Scholar 

  • Tuma R, Russell M, Rosendahl M, Thomas GJ Jr (1995) Solution conformation of the extracellular domain of the human tumor necrosis factor receptor probed by Raman and UV-resonance Raman spectroscopy: structural effects of an engineered PEG linker. Biochemistry 34(46):15150–15156

    Article  PubMed  CAS  Google Scholar 

  • Weitz DA, Garoff S, Gersten JI, Nitzan A (1983) The enhancement of Raman scattering, resonance Raman scattering and fluorescence from molecules adsorbed on a rough silver surface. J Chem Phys 79:5324

    Article  Google Scholar 

  • Wyckoff HW, Tsernoglou D, Hanson AW, Knox JR, Lee B, Richanrds MF (1970) The three-dimensional structure of ribonuclease-S. Interpretation of an electron density map at a nominal resolution of 2 a. J Biol Chem 245:305–328

    PubMed  CAS  Google Scholar 

  • Yang Y, Shi J, Hawamura G, Nogami M (2008) Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface–enhanced Raman scattering. Scr Mater 58:862–865

    Article  CAS  Google Scholar 

  • Zhang D, Xie Y, Mrozek MF, Ortiz C, Davisson VJ, Ben-Amotz D (2003) Raman detection of proteomic analytes. Anal Chem 75(21):5703–5709

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yonzon CR, Duyne RPV (2006) Nanosphere lithography fabricated plasmonic materials and their applications. J Mater Res 21:1083–1092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Di Fabrizio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Das, G. et al. (2011). Low Concentration Protein Detection Using Novel SERS Devices. In: Diaspro, A. (eds) Optical Fluorescence Microscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15175-0_12

Download citation

Publish with us

Policies and ethics