Skip to main content

Universality as a Consequence of Scale Invariance

  • Chapter
  • First Online:
Scale Invariance
  • 1450 Accesses

Abstract

In the introductory chapter (Chap.1) we showed several examples of critical behaviours near second order phase transitions. Let us remind ourselves of the key observations. When the temperature is near the critical temperature, most physical quantities obey a power law(TT c )x, where xis called a critical exponent. In this chapter we will see that this sort of behaviour is the signature of the scale invariance of the system close to the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Even if we call it f and not g, the quantity we are interested in here is strictly speaking the Gibbs free energy, which we could call the free enthalpy in so far as it depends on the intensive magnetic variable h and not on the corresponding extensive variable, the magnetisation m.

  2. 2.

    For simplicity, the term mean field exponents refers to the exponents calculated within the framework of the mean field approximation.

  3. 3.

    Scaling methods have become a standard tool for physicists today. The word scaling evokes a structure of nature and particular relations, but most of all a universal approach and type of analysis. It refers to an observation as much as to an action, with the idea that the this active approach molds the observation process.

  4. 4.

    Note that more generally the study of changes of scale is also very useful in the case of spatio-temporal phenomena, outside the context of decimation. Take for example a random walk in discrete time (Sect. 4.3.3) obeying the law of diffusion: when we contract time by a factor b, space must be contracted by a factor b α = b 1 ∕ 2 to obtain a statistically identical trajectory. This change of scale factor is the only one for which we obtain a non trivial limit of the diffusion coefficient D at b → . In the case of anomalous diffusion, with “pathological” jump statistics (Lévy flights) or diffusion on a fractal object, the required exponent α is greater than 1 ∕ 2 in the first case (Lévy flights involve superdiffusion) and less than 1 ∕ 2 in the case of a fractal space (where the dead branches lead to subdiffusion).

  5. 5.

    A fixed point \({\mathsf{M}}^{{_\ast}} = ({x}^{{_\ast}},{y}^{{_\ast}},{z}^{{_\ast}},\;\ldots ) = f({x}^{{_\ast}},{y}^{{_\ast}},{z}^{{_\ast}},\;\ldots )\) is said to be stable in the direction x, if f applied iteratively at point \(\mathsf{M} = ({x}^{{_\ast}} + dx,{y}^{{_\ast}},{z}^{{_\ast}},\;\ldots )\) brings M to M  ∗  (dx being infinitesimal).

  6. 6.

    It was proved for the renormalisation describing the transition to chaos by doubling the period (see Chap. 9) [Collet and Eckmann 1980].

  7. 7.

    Given that only one of these p choices progresses the line in each direction, the length L takes the value pN 1 ∕ 2 where N is the total number of spins. However, since L is a factor in the expression of f defect, its precise value does not play a role in the sign of f defect.

References

  1. F.F. Abraham, Computational statistical mechanics methodology. Applications and supercomputing. Adv. Phys. 35, 1 (1986)

    Google Scholar 

  2. J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, The Theory of Critical Phenomena(An Introduction to the Renormalization Group) (Oxford University Press, 1992) p. 140

    Google Scholar 

  3. D.J. Bishop, J.D. Reppy, Study of the superfluid transition in 2-dimensional He-4 films. Phys. Rev. B 22, 5171 (1980)

    Article  ADS  Google Scholar 

  4. A.J. Bray, Exact renormalization-group results for domain-growth-scaling in spinodal decomposition. Phys. Rev. Lett. 62, 2841 (1989)

    Article  ADS  Google Scholar 

  5. A.J. Bray, Theory of phase ordering kinetics. Adv. Phys. 51, 481 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  6. L.M. Brown, Renormalization. From Lorentz to Landau (and beyond) (Springer, Berlin, 1993)

    Google Scholar 

  7. P. Collet, J. -P. Eckmann and O. E. Lanford, Universal properties of maps on an interval, Com. Math. Phys., 76, 3, 211 (1980)

    Google Scholar 

  8. A.T. Fiory, A.F. Hebard, W.I. Glaberson, Superconductiong phase-transition in Indium-oxide thin-film composites. Phys. Rev. B 28, 5075 (1983)

    Google Scholar 

  9. M.E. Fisher, The renormalization-group and the theory of critical behavior. Rev. Mod. Phys. 46, 597 (1974)

    Article  ADS  Google Scholar 

  10. M.E. Fisher, Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653 (1998)

    Article  ADS  MATH  Google Scholar 

  11. N. Goldenfeld, in Frontiers in Physics. Lectures on phase transitions and the renormalization-group, vol 85 (Addison-Wesley, Reading, 1992)

    Google Scholar 

  12. A.F. Hebard, A.T. Fiory, Critical-exponent measurements of a two-dimensional superconductor. Phys. Rev. Lett. 50, 1603 (1983)

    Article  ADS  Google Scholar 

  13. F.C. Hohenberg, B.J. Halperin, Theory of dynamical critical phenomena. Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  14. L.P. Kadanoff, Scaling laws for Ising models near T c . Physics 2, 263 (1966)

    Google Scholar 

  15. J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase-transitions in2-dimensional systems. J. Phys. C. Solid State 6, 1181 (1973)

    Article  ADS  Google Scholar 

  16. M. Laguës, Concevoir et raisonner en dimension 2. La Recherche 90, 580 (1978)

    Google Scholar 

  17. A. Lesne, Méthodes de renormalisation (Eyrolles, Paris, 1995)

    Google Scholar 

  18. S.K. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading Mass, 1976)

    Google Scholar 

  19. C.A. Murray, D.H. Winkle, Experimental observation of two-stage melting in a classical two-dimensional screened Coulomb system. Phys. Rev. Lett. 58 1200 (1987)

    Article  ADS  Google Scholar 

  20. M. Nauenberg, B. Nienhuis, Critical surface for square Ising spin-lattice. Phys. Rev. Lett. 33, 944 (1974)

    Article  ADS  Google Scholar 

  21. D.R. Nelson, Phase Transitions and Critical Phenomena 7 (1983).

    Google Scholar 

  22. D.R. Nelson, B.I. Halperin, Dislocation-mediated melting in 2 dimensions. Phys. Rev. B 19, 2457 (1979)

    Article  ADS  Google Scholar 

  23. L. Onsager Phys. Rev vol 65, p 117 (1944)

    Google Scholar 

  24. E. Orignac, T. Giamarchi, Effects of disorder on two strongly correlated coupled-chains. Phys. Rev. B. 56, 7167 (1997)

    Article  ADS  Google Scholar 

  25. E. Orignac, T. Giamarchi, Weakly disordered spin ladders. Phys. Rev. B 57, 5812 (1998)

    Article  ADS  Google Scholar 

  26. M. Plischke, B. Bergersen, Equilibrium Statistical Physics (World Scientific, Singapore, 1994)

    MATH  Google Scholar 

  27. T.M. Rogers, K.R. Elder, R.C. Desai, Numerical study of the late stages of spinodal decomposition. Phys. Rev. B 37, 9638 (1988)

    Article  ADS  Google Scholar 

  28. Y. Saïto, H. Müller-Krumbhaar, Applications of the Monte-Carlo Method in Statistical Physics (Springer, Berlin, 1984)

    Google Scholar 

  29. B. Widom, Equation of state in neighborhood of critical point. J. Chem. Phys. 43, 3898 (1965)

    Article  ADS  Google Scholar 

  30. K.G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and Kadanoff scaling picture. Phys. Rev. B 4, 3174 (1971)

    Google Scholar 

  31. K.G. Wilson, Renormalization group and critical phenomena. 2. Phase-space cell analysis of critical behavior. Phys. Rev. B 4, 3184 (1971)

    Google Scholar 

  32. K.G. Wilson, M.E. Fisher, Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28,240 (1972)

    Google Scholar 

  33. K.G. Wilson, Les systèmes physiques et les échelles de longueur. Pour la Science 16 (1979)

    Google Scholar 

  34. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annick Lesne .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lesne, A., Laguës, M. (2012). Universality as a Consequence of Scale Invariance. In: Scale Invariance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15123-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15123-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15122-4

  • Online ISBN: 978-3-642-15123-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics