Skip to main content

Eigenvector-based Interpolation and Segmentation of 2D Tensor Fields

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

We propose a topology-based segmentation of 2D symmetric tensor fields, which results in cells bounded by tensorlines. We are particularly interested in the influence of the interpolation scheme on the topology, considering eigenvector-based and component-wise linear interpolation. When using eigenvector-based interpolation the most significant modification to the standard topology extraction algorithm is the insertion of additional vertices at degenerate points. A subsequent Delaunay re-triangulation leads to connections between close degenerate points. These new connections create degenerate edges and tri angles.When comparing the resulting topology per triangle with the one obtained by component-wise linear interpolation the results are qualitatively similar, but our approach leads to a less “cluttered” segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aldroubi and P. Basser. Reconstruction of vector and tensor fields from sampled discrete data. Contemp. Math., 247:1–15, 1999.

    MathSciNet  Google Scholar 

  2. P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, and M. Desbrun. Anisotropic polygonal remeshing. Siggraph’03, 22(3):485–493, Jul 2003.

    Google Scholar 

  3. A. Bhalerao and C.-F. Westin. Tensor splats: Visualising tensor fields by texture mapped volume rendering. In MICCAI’03, pages 294–901, 2003.

    Google Scholar 

  4. O. Coulon, D. C. Alexander, and S. Arridge. Tensor field regularisation for dt-mr images. In MIUA01, pages 21–24, 2001.

    Google Scholar 

  5. T. Delmarcelle. The Visualization of Second-order Tensor Fields. PhD thesis, Stanford University, 1994.

    Google Scholar 

  6. L. Feng, I. Hotz, B. Hamann, and K. Joy. Anisotropic noise samples. IEEE TVCG, 14(2):342–354, 2008.

    Google Scholar 

  7. R. B. Haber. Visualization techiques for engineering mechanics. Computing Systems in Engineering, 1(1):37–50, 1990.

    Article  MathSciNet  Google Scholar 

  8. I. Hotz, L. Feng, H. Hagen, B. Hamann, B. Jeremic, and K. I. Joy. Physically based methods for tensor field visualization. In IEEE Visualization 2004, pages 123–130, 2004.

    Google Scholar 

  9. G. Kindlmann. Superquadric tensor glyphs. In Eurographics Symposium on Visualization, pages 147–154, May 2004.

    Google Scholar 

  10. G. Kindlmann, R. S. J. Estepar, M. Niethammer, S. Haker, and C.-F. Westin. Geodesic-loxodromes for diffusion tensor interpolation and difference measurement. In MICCAI’07, pages 1–9, 2007.

    Google Scholar 

  11. G. Kindlmann and C.-F. Westin. Diffusion tensor visualization with glyph packing. IEEE TVCG, 12(5):1329–1336, 2006.

    Google Scholar 

  12. Y. Lavin, R. Batra, L. Hesselink, and Y. Levy. The topology of symmetric tensor fields. AIAA 13th Computational Fluid Dynamics Conference, page 2084, 1997.

    Google Scholar 

  13. M. Martin-Fernandez, C.-F. Westin, and C. Alberola-Lopez. 3d bayesian regularization of diffusion tensor MRI using multivariate gaussian markov random fields. In MICCAI’04, pages 351–359, 2004.

    Google Scholar 

  14. M. Moakher and P. G. Batchelor. Symmetric positive-definite matrices. In Visualization and Image Processing of Tensor Fields, pages 285–297. Springer, 2006.

    Google Scholar 

  15. G. M. Nielson and I.-H. Jung. Tools for computing tangent curves for linearly varying vector fields over tetrahedral domains. IEEE TVCG, 5(4):360–372, 1999.

    Google Scholar 

  16. X. Tricoche. Vector and Tensor Field Topology Simplification, Tracking and Visualization. PhD thesis, TU Kaiserslautern, 2002.

    Google Scholar 

  17. X. Tricoche, G. Scheuermann, H. Hagen, and S. Clauss. Vector and tensor field topology simplification on irregular grids. In VisSym ’01, pages 107–116, 2001.

    Google Scholar 

  18. J. Weickert and M. Welk. Tensor field interpolation with pdes. In Visualization and Processing of Tensor Fields, pages 315–324. Springer, 2005.

    Google Scholar 

  19. X. Zheng and A. Pang. Hyperlic. In IEEE Visualization’03, pages 249–256, 2003.

    Google Scholar 

  20. X. Zheng and A. Pang. Topological lines in 3d tensor fields. In IEEE Visualization’04, 2004.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the German Research Foundation (DFG) through a Junior Research Group Leader award (Emmy Noether Program), and in part by the the National Science Foundation under contract CCF-0702817. We thank our colleagues at the Zuse Institute Berlin and the Institute for Data Analysis and Visualization (IDAV), UC Davis.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Sreevalsan-Nair, J., Auer, C., Hamann, B., Hotz, I. (2011). Eigenvector-based Interpolation and Segmentation of 2D Tensor Fields. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15014-2_12

Download citation

Publish with us

Policies and ethics