Skip to main content

A Multilevel Algorithm to Compute Steady States of Lattice Boltzmann Models

  • Conference paper
  • First Online:
Book cover Coping with Complexity: Model Reduction and Data Analysis

Abstract

We present a multilevel algorithm to compute steady states oflattice Boltzmann models directly as fixed points of a time-stepper. At the fine scale, we use a Richardson iteration for the fixed point equation, which amounts to time-stepping towards equilibrium. This fine-scale iteration is accelerated by transferring the error to a coarse level. At this coarse level, one directly solves for the density (the zeroth moment of the lattice Boltzmann distributions), for which a coarse-level equation is known in some appropriate limit. The algorithm closely resembles the classical multigrid algorithm in spirit, structure and convergence behaviour. In this paper, we discuss the formulation of this algorithm. We give an intuitive explanation of its convergence behaviour and illustrate with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Briggs, W., Henson, V.E., McCormick, S.: A multigrid tutorial. SIAM: Philadelphia, PA, (2000)

    Google Scholar 

  2. Chalub, F.A.C.C., Markowich, P.A., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. Monatshefte für Mathematik 142(1–2) (2004) 123–141

    Article  MATH  MathSciNet  Google Scholar 

  3. Chopard, B., Dupuis, A., Masselot, A., Luthi, P.: Cellular automata and lattice Boltzmann techniques: An approach to model and simulate complex systems. Advances in Complex Systems 5(2) (2002) 103–246

    Article  MATH  MathSciNet  Google Scholar 

  4. Coscia, V., Delitala, M., Frasca, P.: On the mathematical theory of vehicular traffic flow II: Discrete velocity kinetic models. International Journal of Non-Linear Mechanics 42(3) (2007) 411–421

    Article  MathSciNet  Google Scholar 

  5. Dawson, S., Chen, S., Doolen, G.: Lattice Boltzmann computations for reaction-diffusion equations. The Journal of Chemical Physics 98(2) (1993) 1514–1523

    Article  Google Scholar 

  6. Gear, C.W., Kevrekidis, I.G.: Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum. SIAM Journal on Scientific Computing 24(4) (2003) 1091–1106

    Article  MATH  MathSciNet  Google Scholar 

  7. Gear, C.W., Kevrekidis, I.G.: Constraint-defined manifolds: a legacy code approach to low-dimensional computation. Journal on Scientific Computing 25(1) (2005) 17–28

    Article  MathSciNet  Google Scholar 

  8. Gear, C.W., Kaper, T.J., Kevrekidis, I.G., Zagaris, A.: Projecting to a slow manifold: Singularly perturbed systems and legacy codes. IAM Journal on Applied Dynamical Systems 4(3) (2005) 711–732

    Article  MATH  MathSciNet  Google Scholar 

  9. He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier–Stokes equation. Journal of Statistical Physics 88(3) (1997) 927–944

    Article  MATH  MathSciNet  Google Scholar 

  10. Junk, M., Klar, A.: Discretizations for the incompressible Navier–Stokes equations based on the lattice Boltzmann method. SIAM Journal on Scientific Computing 22(1) (2000) 1–19

    Article  MATH  MathSciNet  Google Scholar 

  11. Kevrekidis, I.G., Samaey, G.: Equation-free multiscale computation: Algorithms and applications. Annual Review on Physical Chemistry 60 (2009) 321–344

    Article  Google Scholar 

  12. Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C.: Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level tasks. Communications in Mathematical Sciences 1(4) (2003) 715–762

    MATH  MathSciNet  Google Scholar 

  13. Li, C., Ebert, U., Brok, W.J.M., Hundsdorfer, W.: Spatial coupling of particle and fluid models for streamers: Where nonlocality matters. Journal of Physics D: Applied Physics 41(3) (2008) 032005

    Google Scholar 

  14. Luo, L.S.: Unified theory of lattice Boltzmann models for nonideal gases. Physical Review Letters 81(8) (1998) 1618–1621

    Article  Google Scholar 

  15. Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: Chemotaxis equations. SIAM Journal on Applied Mathematics 62(4) (2002) 1222–1250

    Article  MATH  MathSciNet  Google Scholar 

  16. Qian, Y., Orszag, S.: Scalings in diffusion-driven reaction A+BC: Numerical simulations by lattice BGK models. Journal of Statistical Physics 81(1–2) (1995) 237–253

    Article  MATH  Google Scholar 

  17. Qiao, L., Erban, R., Kelley, C.T., Kevrekidis, I.G.: Spatially distributed stochastic systems: Equation-free and equation-assisted preconditioned computations. The Journal of Chemical Physics 125 (2006) 204108

    Google Scholar 

  18. Samaey, G., Vanroose, W.: An analysis of equivalent operator preconditioning for equation-free Newton–Krylov computations. SIAM Journal on Numerical Analysis 48(2) (2010) 633–658

    Article  Google Scholar 

  19. Samaey, G., Vanroose, W., Roose, D., Kevrekidis, I.G.: Newton–Krylov solvers for the equation-free computation of coarse traveling waves. Computer Methods in Applied Mechanics and Engineering 197(43–44) (2008) 3480–3491

    Article  MATH  MathSciNet  Google Scholar 

  20. Succi, S.: The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, London (2001)

    MATH  Google Scholar 

  21. Theodoropoulos, C., Qian, Y.H., Kevrekidis, I.G.: Coarse stability and bifurcation analysis using time-steppers: A reaction-diffusion example. Proceedings of the National Academy of Science 97 (2000) 9840–9845

    Article  MATH  Google Scholar 

  22. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic Press, NY (2001)

    MATH  Google Scholar 

  23. Van Leemput, P., Vanroose, W., Roose, D.: Mesoscale analysis of the equation-free constrained runs initialization scheme. Multiscale Modeling and Simulation 6(4) (2007) 1234–1255

    Article  MathSciNet  Google Scholar 

  24. Vandekerckhove, C., Kevrekidis, I.G., Roose, D.: An efficient Newton–Krylov implementation of the constrained runs scheme for initializing on a slow manifold. Journal on Scientific Computing 39(2) (2009) 167–188

    Article  MathSciNet  Google Scholar 

  25. Vanroose, W., Samaey, G., Van Leemput, P.: Coarse-grained analysis of a lattice Boltzmann model for planar streamer fronts. Technical Report TW479, Department of Computer Science, K.U.Leuven (2007)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Foundation – Flanders through Research Projects G.0130.03 and G.0170.08 and by the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office through grant IUAP/V/22 (GS). The scientific responsibility rests with its authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Samaey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Samaey, G., Vandekerckhove, C., Vanroose, W. (2011). A Multilevel Algorithm to Compute Steady States of Lattice Boltzmann Models. In: Gorban, A., Roose, D. (eds) Coping with Complexity: Model Reduction and Data Analysis. Lecture Notes in Computational Science and Engineering, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14941-2_8

Download citation

Publish with us

Policies and ethics