Skip to main content

Universal Algorithms, Mathematics of Semirings and Parallel Computations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 75))

Abstract

This isaut]Grigory L. Litvinovaut]Victor P. Maslovaut]Anatoly Ya. Rodionovaut]Andrei N. Sobolevskii a survey paper on applications of mathematics of semirings to numerical analysis and computing. Concepts of universal algorithm and generic program are discussed. Relations between these concepts and mathematics of semirings are examined. A very brief introduction to mathematics of semirings (including idempotent and tropical mathematics) is presented. Concrete applications to optimization problems, idempotent linear algebra and interval analysis are indicated. It is known that some nonlinear problems (and especially optimization problems) become linear over appropriate semirings with idempotent addition (the so-called idempotent superposition principle). This linearity over semirings is convenient for parallel computations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation and Compiling, Vol. 2: Compiling. Prentice-Hall, NJ (1973)

    Google Scholar 

  2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, MA (1976)

    Google Scholar 

  3. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  4. Avdoshin, S.M., Belov, V.V., Maslov, V.P., Chebotarev, A.M.: Design of computational media: mathematical aspects. In: Maslov, V.P., Volosov, K.A. (eds.) Mathematical Aspects of Computer Engineering. MIR Publishers, Moscow (1988) 9–145

    Google Scholar 

  5. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, New York (1992)

    MATH  Google Scholar 

  6. Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic Programming – An Introduction. Lect. Notes Comput. Sci., 1608 (1999) 28–115

    Article  Google Scholar 

  7. Backhouse, R.C., Carré, B.A.: Regular algebra applied to path-finding problems. J. Inst. Math. Appl 15 (1975) 161–186

    Article  MATH  MathSciNet  Google Scholar 

  8. Barth, W., Nuding, E., Optimale Lösung von Intervallgleichungsystemen. Computing 12 (1974) 117–125

    MATH  MathSciNet  Google Scholar 

  9. Butkovič, P., Zimmermann, K.: A strongly polynomial algorithm for solving two-sided linear systems in max-algebra. Discrete Appl. Math. 154 (2006) 437–446

    Article  MATH  MathSciNet  Google Scholar 

  10. Carré, B.A.: An algebra for network routing problems. J. Inst. Appl. 7 (1971) 273–294

    Article  MATH  Google Scholar 

  11. Carré, B.A.: Graphs and Networks. The Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  12. Cechlárová, K., Cuninghame-Green, R.A.: Interval systems of max-separable linear equations. Linear Algebra and its Applications 340 (2002) 215–224

    Article  MATH  MathSciNet  Google Scholar 

  13. Cohen, G., Gaubert, S., Quadrat, J.P.: Max-plus algebra and system theory: where we are and where to go now. Annu. Rev. Contr. 23 (1999) 207–219

    Google Scholar 

  14. Coxson, G.E.: Computing exact bounds on elements of an inverse interval matrix is NP-hard. Reliable Comput. 5 (1999) 137–142

    Article  MATH  MathSciNet  Google Scholar 

  15. Cuninghame-Green, R.A.: Minimax algebra. Lect. Notes in Economics and Mathematical Systems, 166. Springer, Berlin (1979)

    Google Scholar 

  16. Cuninghame-Green, R.A.: Minimax algebra and applications. Adv. Imag. Electron Phys. 90 (1995) 1–121

    Article  Google Scholar 

  17. Cuningham-Green, R.A.: Minimax algebra and its applications. Fuzzy Set. Syst. 41 (1991) 251–267

    Article  Google Scholar 

  18. Cuningham-Green, R.A., Butkovic, P.: The equation ax=by over (max,+). Theor. Comput. Sci. 293 (2003) 3–12

    Article  Google Scholar 

  19. Del Moral, P.: A survey of Maslov optimization theory: optimality versus randomness. In: Kolokoltsov, V.N., Maslov, V.P. (eds.) Idempotent Analysis and Applications, pp. 243–302. Kluwer, Dordrecht (1997) (Appendix)

    Google Scholar 

  20. Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)

    MATH  Google Scholar 

  21. Glazek, K.: A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences: With Complete Bibliography. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  22. Golan, J.S.: Semirings and their Applications. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  23. Gondran, M.: Path algebra and algorithms. In: Roy, B. (ed.). Combinatorial Programming: Methods and Applications, NATO Adv. Study Inst. Ser., Ser. C. 19 (1975) 137–148

    Google Scholar 

  24. Gondran, M., Minoux, M.: Graphes et algorithmes. Editions Eyrolles, Paris (1979, 1988)

    Google Scholar 

  25. Gondran, M., Minoux, M.: Graphes, dioïdes et semi-anneaux. Editions TEC&DOC, Paris (2001)

    Google Scholar 

  26. Gunawardena, J. (ed.): Idempotency. Publ. of the Newton Institute 11, Cambridge University Press, Cambridge (1998)

    Google Scholar 

  27. Hardouin, L., Cottenceau, B., Lhommeau, M., Le Corronc, E.: Interval systems over idempotent semirings. Lin. Algebra Appl. 431 (2009) 855–862

    Article  MATH  Google Scholar 

  28. Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry, Oberwolfach Seminars 35. Birkhäuser, Basel (2007)

    Google Scholar 

  29. Kleene, S.C.: Representation of events in nerve sets and finite automata. In: McCarthy, J., Shannon, C. (eds.). Automata Studies, 3–40. Princeton University Press, Princeton (1956)

    Google Scholar 

  30. Klement, E.P., Pap, E. (eds.), Mathematics of Fuzzy Systems. 25th Linz Seminar on Fuzzy Set Theory, Linz, Austria, Feb 3–7, 2004, Abstracts. J. Kepler University, Linz (2004)

    Google Scholar 

  31. Kolokoltsov, V.N.: Idempotency structures in optimization. J. Math. Sci. 104(1) (2001) 847–880

    Article  Google Scholar 

  32. Kolokoltsov, V., Maslov, V.: Idempotent analysis and applications. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  33. Kreinovich, V., Lakeyev, A.V., Noskov, S.I.: Optimal solution of interval linear systems is intractable (NP-hard). Interval Computations 1 (1993) 6–14

    MathSciNet  Google Scholar 

  34. Kreinovich, V., Lakeyev, A.V., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  35. Kung, H.T.: Two-level pipelined systolic arrays for matrix multiplication, polynomial evaluation and discrete Fourier transformation. In: Demongeof, J. et al. (eds.). Dynamical Systems and Cellular Automata, 321–330. Academic Press, New York (1985)

    Google Scholar 

  36. Lehmann, D.J.: Algebraic structures for transitive closure. Theor. Comput. Sci. 4 (1977) 59–76

    Article  MATH  MathSciNet  Google Scholar 

  37. Litvinov, G.L.: Dequantization of mathematics, idempotent semirings and fuzzy sets. In: Klement, E.P., Pap, E. (eds.), Mathematics of Fuzzy Systems, 113–117. J. Kepler University, Linz (2004)

    Google Scholar 

  38. Litvinov, G.L.: The Maslov dequantization, idempotent and tropical mathematics: a brief introduction. J. Math. Sci. 140(3) (2007) 426–444; arXiv:math.GM/0507014

    Google Scholar 

  39. Litvinov, G.L., Maslov, V.P.: Correspondence principle for idempotent calculus and some computer applications. (IHES/M/95/33), Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (1995); arXiv:math.GM/0101021

    Google Scholar 

  40. Litvinov, G.L., Maslov, V.P.: The correspondence principle for idempotent calculus and some computer applications. In: Gunawardena, J. (ed.). Idempotency. Publ. of the Newton Institute 11, 20–443. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  41. Litvinov, G.L. Maslov, V.P. (eds.): Idempotent mathematics and mathematical physics. Contemporary Mathematics 377, AMS, Providence, RI (2005)

    Google Scholar 

  42. Litvinov, G.L., Maslova, E.V.: Universal numerical algorithms and their software implementation. Programming and Computer Software 26(5) (2000) 275–280; arXiv:math.SC/0102114

    Google Scholar 

  43. Litvinov, G.L., Maslov, V.P., Rodionov, A.Ya.: A unifying approach to software and hardware design for scientific calculations and idempotent mathematics. International Sophus Lie Centre, Moscow (2000); arXiv:math.SC/0101069

    Google Scholar 

  44. Litvinov, G.L., Rodionov, A.Ya., Tchourkin, A.V.: Approximate rational arithmetics and arbitrary precision computations for universal algorithms. Int. J. Pure Appl. Math. 45(2) (2008) 193–204; arXiv:math.NA/0101152

    Google Scholar 

  45. Litvinov, G.L., Sobolevskiĭ, A.N.: Exact interval solutions of the discrete Bellman equation and polynomial complexity of problems in interval idempotent linear algebra. Dokl. Math. 62(2) (2000) 199–201; arXiv:math.LA/0101041

    Google Scholar 

  46. Litvinov, G.L., Sobolevskiĭ, A.N.: Idempotent interval analysis and optimization problems. Reliable Comput. 7(5) (2001) 353–377; arXiv:math.SC/0101080

    Google Scholar 

  47. Lorenz, M.: Object Oriented Software Development: A Practical Guide. Prentice Hall, NJ (1993)

    Google Scholar 

  48. Maslov, V.P.: New superposition principle for optimization problems. In: Seminaire sur les Equations aux Dérivées Partielles 1985/86. Centre Math. De l’Ecole Polytechnique, Palaiseau (1986) exposé 24

    Google Scholar 

  49. Maslov, V.P.: A new approach to generalized solutions of nonlinear systems. Soviet Math. Dokl. 42(1) (1987) 29–33

    Google Scholar 

  50. Maslov, V.P.: On a new superposition principle for optimization problems. Uspekhi Mat. Nauk [Russian Math. Surveys] 42(3) (1987) 39–48

    Google Scholar 

  51. Maslov, V.P.: Méthodes opératorielles. MIR, Moscow (1987)

    MATH  Google Scholar 

  52. Maslov, V.P. et al.: Mathematics of semirings and its applications. Technical report, Institute for New Technologies, Moscow (1991) (in Russian)

    Google Scholar 

  53. Maslov, V.P., Volosov, K.A. (eds.). Mathematical Aspects of Computer Engineering. MIR, Moscow (1988)

    Google Scholar 

  54. Matijasevich, Yu.V.: A posteriori version of interval analysis. In: Arató, M., Kátai, I., Varga, L. (eds.). Topics in the Theoretical Basis and Applications of Computer Sciences, 339–349. Proc. Fourth Hung. Computer Sci. Conf., Budapest, Acad. Kiado (1986)

    Google Scholar 

  55. Mikhalkin, G.: Tropical geometry and its applications. Proceedings of the ICM, Madrid, Spain 2 (2006) 827–852; arXiv:math.AG/0601041v2

    Google Scholar 

  56. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    MATH  Google Scholar 

  57. Myskova, H.: Interval systems of max-separable linear equations. Lin. Algebra Appl. 403 (2005) 263–272

    Article  MATH  Google Scholar 

  58. Myskova, H.: Control solvability of interval systems of max-separable linear equations. Lin. Algebra Appl. 416 (2006) 215–223

    Article  MATH  MathSciNet  Google Scholar 

  59. Neumayer, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  60. Pandit, S.N.N.: A new matrix calculus, SIAM J. Appl. Math. 9 (1961) 632–639

    Article  MATH  MathSciNet  Google Scholar 

  61. Pin, J.E.: Tropical semirings. In: Gunawardena, J. (ed.). Idempotency. Publ. of the Newton Institute 11, 50–60. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  62. Pohl, I.: Object-Oriented Programming Using C ++ (2nd edn). Addison-Wesley, MA (1997)

    MATH  Google Scholar 

  63. Quadrat, J.P.: Théorèmes asymptotiques en programmation dynamique. Comptes Rendus Acad. Sci. Paris 311 (1990) 745–748

    MATH  MathSciNet  Google Scholar 

  64. Quadrat, J.P., Max-Plus working group: Maxplus Algebra Software. http://scilab.org/contrib; http://maxplus.org (2007)

  65. Robert, Y., Tristram, D.: An orthogonal systolic array for the algebraic path problem. Computing 39 (1987) 187–199

    Article  MATH  MathSciNet  Google Scholar 

  66. Rote, G.: A systolic array algorithm for the algebraic path problem (shortest paths; matrix inversion). Computing 34 (1985) 191–219

    Article  MATH  MathSciNet  Google Scholar 

  67. Sedukhin, S.G.: Design and analysis of systolic algorithms for the algebraic path problem. Comput. Artif. Intell. 11(3) (1992) 269–292

    MATH  MathSciNet  Google Scholar 

  68. Simon, I.: Recognizable sets with multiplicities in the tropical semiring. Lecture Notes in Computer Science, 324 (1988) 107–120

    Article  Google Scholar 

  69. Sobolevskiĭ, A.N.: nterval arithmetic and linear algebra over idempotent semirings. Doklady Akademii Nauk 369 (1999) 747–749 (in Russian)

    Google Scholar 

  70. Stepanov, A., Lee, M.: The standard template library. Hewlett-Packard, Palo Alto (1994)

    Google Scholar 

  71. Viro, O.: Dequantization of real algebraic geometry on a logarithmic paper. In: 3rd European Congress of Mathematics, Barcelona (2000); arXiv:math/0005163

    Google Scholar 

  72. Viro, O.: From the sixteenth Hilbert problem to tropical geometry. Japan. J. Math. 3 (2008) 1–30

    Article  MathSciNet  Google Scholar 

  73. Voevodin, V.V.: Mathematical foundation of parallel computings, 343. World Scientific, Singapore (1992)

    Google Scholar 

  74. Vorobjev, N.N.: The extremal matrix algebra. Soviet Math. Dokl. 4 (1963) 1220–1223

    Google Scholar 

  75. Vorobjev, N.N.: Extremal algebra of positive matrices. Elektronische Informationsverarbeitung und Kybernetik 3 (1967) 39–57 (in Russian)

    Google Scholar 

  76. Vorobjev, N.N.: Extremal algebra of nonnegative matrices. Elektronische Informationsverarbeitung und Kybernetik 6 (1970) 302–312 (in Russian).

    Google Scholar 

  77. Zimmermann, K.: Interval linear systems and optimization problems over max-algebras. In: Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmermann, K. (eds.). Linear Optimization Problems with Inexact Data, 165–193. Springer, New York (2006)

    Google Scholar 

  78. Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS’09), Rome, Italy May 23–May 29, IEEE Computer Society Press, 2009; ISBN: 978-1-4244-3751-1

    Google Scholar 

  79. Blithe, D. Rise of the graphics processor. Proc. of the IEEE 96(5) (2008) 761–778

    Article  Google Scholar 

  80. Owens, J.D. et al.: GPU computing. Proc. of the IEEE 96(5) (2008) 879–899

    Article  Google Scholar 

  81. ATLAS: http://math-atlas.sourceforge.net/

  82. LAPACK: http://www.netlib.org/lapack/

  83. PLASMA: http://icl.cs.utk.edu/plasma/

Download references

Acknowledgements

This work is partially supported by the RFBR grant 08-01-00601. The authors are grateful to A. G. Kushner for his kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigory L. Litvinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Litvinov, G.L., Maslov, V.P., Rodionov, A.Y., Sobolevski, A.N. (2011). Universal Algorithms, Mathematics of Semirings and Parallel Computations. In: Gorban, A., Roose, D. (eds) Coping with Complexity: Model Reduction and Data Analysis. Lecture Notes in Computational Science and Engineering, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14941-2_4

Download citation

Publish with us

Policies and ethics