Skip to main content

Long-Term Structures in Southern German Runoff Data

  • Chapter
  • First Online:
In Extremis

Abstract

Hydrological discharge time series are known to depict low-frequency oscillations, long-range statistical dependencies, and pronounced nonlinearities. A better understanding of this runoff behaviour on regional scales is crucial for a variety of water management purposes and flood risk assessments. We aimed at extracting long-term components which influence simultaneously a set of southern German runoff records.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.R. Allen, L.A. Smith, Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise J. Clim. 9, 3373–3404 (1996)

    Article  Google Scholar 

  2. M. Bernstein, V. de Silva, J.C. Langford, Y.B. Tenenbaum, Graph Approximations to Geodesics on Embedded Manifolds, Technical report, Stanford University, Stanford (2000); [available from http://Isomap.stanford.edu/BdSLT.pdf] (Accessed Jan. 2006)

  3. I. Borg, P. Groenen, Modern Multidimensional Scaling (Springer, New York, NY, 1997), p. 471

    Google Scholar 

  4. D.S. Broomhead, G.P. King, Extracting qualitative dynamics from experimental data. Physica D, 20, 217–236 (1986)

    Article  Google Scholar 

  5. F. Camastra, Data dimensionality estimation methods: A survey. Pattern Recognit., 36, 2945–2954, (2002)

    Article  Google Scholar 

  6. T.F. Cox, M.A.A. Cox, Multidimensional Scaling, (Chapman & Hall/CRC, Boca Raton, FL, 2001), p. 308

    Google Scholar 

  7. V. de Silva, Y.B. Tenenbaum, Global versus local methods in nonlinear dimensionality reduction, in S. Becker, S. Thrun, K. Obermayer ed. by Advances in Neural Information Processing Systems 15, (MIT Press, Cambridge, 2002), pp. 705–712

    Google Scholar 

  8. B. Diekrüger, M.J. Kirkby, U. Schröder (eds.), Regionalization in Hydrology vol 254 (IAHS Publications, Wallingford CT, (1999)

    Google Scholar 

  9. E.W. Dijkstra, A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271 (1959)

    Article  Google Scholar 

  10. J.B.Elsner, A.A. Tsonis, Singular Spectrum Analysis. A New Tool in Time Series Analysis, (Plenum Press, New York, NY, 1996) p. 164

    Google Scholar 

  11. A.J. Gámez, C.S. Thou, A. Timmermann, J.Kurths, Nonlinear dimensionality reduction in climate data. Nonlinear Processes Geophys., 11, 393–398 (2004)

    Article  Google Scholar 

  12. M. Ghil, M.R. Allen, M.D. Dettinger, K. Ide, D. Kondrashov, M.E. Mann, A.W. Robertson, A. Saunders, Y. Tian, F. Varadi, P. Yiou, Advanced spectral methods for climatic time series, Rev. Geophys. 40, 1–25 (2002)

    Article  Google Scholar 

  13. N. Golyandina, V. Nekrutkin, A. Zhigljavsky, Analysis of Time Series Structure: \(\textsc{Ssa}\) and related techniques, Monographs on Statistics and Applied Probability, 90, (Chapman & Hall/CRC, Boca Raton, FL, 2001), p. 305

    Google Scholar 

  14. W.W. Hsieh, Nonlinear principal component analysis by neural networks. Tellus, 53(A), 599–615 (2001)

    Google Scholar 

  15. W. Hsieh, K. Hamilton, Nonlinear singular spectrum analysis of the tropical stratospheric wind, Q J R Meteorol. Soc. 129, 2367–2382 (2003)

    Article  Google Scholar 

  16. H.E. Hurst, Long-term storage capacity of reservoirs, Trans. Am. Soc. Civil Eng., 116, 770–808 (1951)

    Google Scholar 

  17. M. Kirby, Geometric Data Analysis. An Empirical Approach to Dimensionality Reduction and the Study of Patterns (Wiley, New York, NY, 2001), p. 363

    Google Scholar 

  18. E. Koscielny-Bunde, J.W. Kantelhardt, P. Braun, A. Bunde, S. Havlin, Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. J. Hydrol. 332, 120–137 (2006)

    Article  Google Scholar 

  19. M.A. Kramer, Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. J. Am. Inst. Chem. Eng. (AIChE), 37, 233–243 (1991)

    Google Scholar 

  20. H. Lange, K. Bernhardt, Long-term components and regional synchronization of river runoffs, in Hydrology: Science and Practice for the 21st Century ed. by B. Webb et al. (British Hydrological Society, 2004), pp. 165–170. ISBN 1-903741-10-6 (Accessed Jan. 2006)

    Google Scholar 

  21. M. Mahecha, Linear and Nonlinear Dimensionality Reduction in Spatial and Temporal Ecological Data Sets, Diploma Thesis, University of Bayreuth, (2006)

    Google Scholar 

  22. B.B. Mandelbrot, Multifractals and 1/f noise, (Springer, New York, NY, 1999), p. 442

    Google Scholar 

  23. B.B. Mandelbrot, J.R. Wallis, Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence, Water Resourc. Res., 5, 967–988 (1969)

    Article  Google Scholar 

  24. D. Markovic, M. Koch, Wavelet and scaling analysis of monthly precipitation extremes in Germany in the 20th century: Interannual to interdecadal oscillations and the North Atlantic Oscillation influence, Water Resourc. Res. 41, W09240, (2005)

    Google Scholar 

  25. A. Montanari, R. Rosso, M.S. Taqqu, A seasonal fractional ARIMA model applied to the Nile River monthly flows at Aswan, Water Resourc. Res. 36, 1249–1259 (2000)

    Article  Google Scholar 

  26. P. Pekárova, P. Miklánek, J. Pekár, Spatial and temporal runoff oscillation analysis of the main rivers of the world during the 19th–20th centuries. J. Hydrol. 274, 62–79 (2003)

    Article  Google Scholar 

  27. S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 2323–2326 (2000)

    Article  Google Scholar 

  28. O. Samko, P. Rosin, D. Marshall, Selection of the optimal parameter value for the Isomap algorithm, Pattern Recognit. Lett. (2006)

    Google Scholar 

  29. A. Saxena, A. Gupta, A. Mukerjee, Non-linear Dimensionality Reduction by Locally Linear Isomaps, L N C S, 3316, 1038–1043 (2004)

    Google Scholar 

  30. T. Shun, C. Duffy, Low-frequency oscillations in precipitation, temperature, and runoff on a west facing mountain front: A hydrogeologic interpretation, Water Resourc. Res. 35, 191–201 (1999)

    Article  Google Scholar 

  31. J.B. Tenenbaum, Mapping a manifold of perceptual observations, in Advances in Neural Information Processing Systems, Vol. 10, ed. by M. Jordan, M. Kearns, S. Solla (MIT Press, Cambridge, 1998), pp. 682–687

    Google Scholar 

  32. J.B. Tenenbaum, V. de Silva, J.C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Bavarian Environment Agency and the Global Runoff Data Centre for providing the runoff data investigated. This work has been supported by the German Federal Ministry of Education and Research (BMBF) within the research project “Scaling Analysis of Hydrometeorological Time Series” (grant no. 03330271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel D. Mahecha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahecha, M.D., Lange, H., Lischeid, G. (2011). Long-Term Structures in Southern German Runoff Data. In: Kropp, J., Schellnhuber, HJ. (eds) In Extremis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14863-7_12

Download citation

Publish with us

Policies and ethics