Skip to main content

Networked Distributed Source Coding

  • Chapter
  • First Online:

Abstract

The data sensed by different sensors in a sensor network is typically correlated. A natural question is whether the data correlation can be exploited in innovative ways along with network information transfer techniques to design efficient and distributed schemes for the operation of such networks. This necessarily involves a coupling between the issues of compression and networked data transmission that have usually been considered separately. In this work we review the basics of classical distributed source coding and discuss some practical code design techniques for it. We argue that the network introduces several new dimensions to the problem of distributed source coding. The compression rates and the network information flow constrain each other in intricate ways. In particular, we show that network coding is often required for optimally combining distributed source coding and network information transfer and discuss the associated issues in detail. We also examine the problem of resource allocation in the context of distributed source coding over networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this chapter, assume that the size of the finite field is a power of 2 so addition and subtraction are the same.

  2. 2.

    \(H_b(p)\) is the binary entropy function defined as \(H_b(p) = -p \log_2 p - (1-p) \log_2 (1-p)\).

  3. 3.

    A directed spanning tree (also called arborescence) of a directed graph \(G=(V,A)\) rooted at vertex \(r \in V\) is a subgraph T of G such that it is a spanning tree if the orientation of the edges is ignored and there is a path from r to all \(v \in V\) when the direction of edges is taken into account. The minimum weight directed spanning tree can be found by a greedy algorithm in polynomial time [54].

  4. 4.

    “Mixed” graph refers to a graph with directed edges and undirected edges.

  5. 5.

    A length r vector with elements from \(G\!F(2)\) can be viewed as an element from \(G\!F(2^r)\).

  6. 6.

    We could also simply perform random linear network coding on these edges.

References

  1. D. Slepian and J. Wolf. Noiseless coding of correlated information sources. IEEE Transactions on Information Theory, 19:471–480, July 1973.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung. Network information flow. IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  3. X. Lin and N. Shroff. Utility maximization for communication networks with multipath routing. IEEE Transactions on Automatic Control, 51(5):766–781, May 2006.

    Article  MathSciNet  Google Scholar 

  4. M. Chiang, S. Low, A. Calderbank, and J. Doyle. Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings of the IEEE, 95(1):255–312, January 2007.

    Article  Google Scholar 

  5. C. E. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal, 27:379–423, 623–656, July, October 1948.

    MathSciNet  MATH  Google Scholar 

  6. T. Cover and J. Thomas. Elements of Information Theory. Wiley, New York, NY, 1991.

    Book  MATH  Google Scholar 

  7. Z. Xiong, A. Liveris, and S. Cheng. Distributed source coding for sensor networks. Signal Processing Magazine, IEEE, 21(5):80–94, September 2004.

    Article  Google Scholar 

  8. T. Cover. A proof of the data compression theorem of slepian and wolf for ergodic sources (corresp.), IEEE Transactions on Information Theory, 21(2):226–228, March 1975.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Stankovic, A. Liveris, Z. Xiong, and C. Georghiades. On code design for the slepian-wolf problem and lossless multiterminal networks. IEEE Transactions on Information Theory, 52(4):1495–1507, April 2006.

    Article  MathSciNet  Google Scholar 

  10. C.-F. Lan, A. Liveris, K. Narayanan, Z. Xiong, and C. Georghiades. Slepian-wolf coding of multiple m-ary sources using ldpc codes. In: Data Compression Conference, 2004. Proceedings. DCC 2004, page 549, March 2004.

    Google Scholar 

  11. A. Liveris, C. Lan, K. Narayanan, Z. Xiong, and C. Georghiades. Slepian-Wolf coding of three binary sources using LDPC codes. In: Proceedings of International Symposium on Turbo Codes and Related Topics, Brest, France, Sep. 2003.

    Google Scholar 

  12. A. Wyner. Recent results in Shannon theory. IEEE Transactions on Information Theory, 20:2–10, January 1974.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. S. Pradhan and K. Ramchandran. Distributed Source Coding using Syndromes (DISCUS): Design and Construction. IEEE Transactions on Information Theory, 49:626–643, March 2003.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Liveris, Z. Xiong, and C. N. Georghiades. Compression of binary sources with side information at the decoder using LDPC codes. IEEE Communications Letters, 6(10):440–442, 2002.

    Article  Google Scholar 

  15. D. Varodayan, A. Aaron, and B. Girod. Rate-adaptive codes for distributed source coding. Signal Processing, 86(11):3123–3130, 2006.

    Article  MATH  Google Scholar 

  16. P. Tan and J. L. Tiffany. A general and optimal framework to achieve the entire rate region for slepian-wolf coding. Signal Processing, 86(11):3102–3114, 2006.

    Article  MATH  Google Scholar 

  17. J. Muramatsu and T. Uyematsu, and T. Wadayama. Low-density parity-check matrices for coding of correlated sources. IEEE Transactions on Information Theory, 51(10):3645–3654, 2005.

    Article  MathSciNet  Google Scholar 

  18. M. Sartipi and F. Fekri. Distributed source coding in wireless sensor networks using LDPC coding: the entire Slepian-Wolf rate region. In: IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, March 2005.

    Google Scholar 

  19. S. Pradhan and K. Ramchandran. Distributed source coding: symmetric rates and applications to sensor networks. In: Data Compression Conference, 2000. Proceedings. DCC 2000, pages 363–372, 2000.

    Google Scholar 

  20. S. Lin and D. J. Costello. Error Control Coding: Fundamentals and Applications. Prentice Hall, New Jersey, 2004.

    Google Scholar 

  21. R. Gallager. Information Theory and Reliable Communication, Wiley, New York, 1968.

    MATH  Google Scholar 

  22. T. Richardson and R. Urbanke. Modern Coding Theory, Cambridge University Press, Cambridge, 2008.

    Book  MATH  Google Scholar 

  23. J. Garcia-Frias, Y. Zhao, and W. Zhong. Turbo-like codes for transmission of correlated sources over noisy channels. Signal Processing Magazine, IEEE, 24(5):58–66, September 2007.

    Article  Google Scholar 

  24. J. Garcia-Frias and Y. Zhao. Compression of correlated binary sources using turbo codes. IEEE Communications Letters, 5(10):417–419, October 2006.

    Article  Google Scholar 

  25. A. Aaron and B. Girod. Compression with side information using turbo codes. In: Proceedings of IEEE Data Compression Conference(DCC), pages 252–261, 2002.

    Google Scholar 

  26. T. P. Coleman, A. H. Lee, M. Medard, and M. Effros. Low-complexity approaches to Slepian-Wolf near-lossless distributed data compression. IEEE Transactions on Information Theory, 52(8):3546–3561, 2006.

    Article  MathSciNet  Google Scholar 

  27. B. Rimoldi and C. Urbanke. Asynchronous Slepian-Wolf coding via source-splitting. In: Proceedings of International Symposium on Information Theory, Ulm, Germany, page 271, Ulm, Germany, June–July 1997.

    Google Scholar 

  28. S. Y. Tung, Multiterminal source coding, Ph.D. Dissertation, Cornell University, 1978.

    Google Scholar 

  29. K. Housewright. Source coding studies for multiterminal systems. Ph.D. Dissertation, University of California, Los Angeles, 1977.

    Google Scholar 

  30. T. Berger. Multiterminal source coding. In: CISM Courses and Lectures No. 229, The Information Theory Approach to Communications, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  31. W. Kang and S. Ulukus. An outer bound for the multi-terminal rate-distortion region. In: IEEE International Symposium on Information Theory, pages 1419–1423, Seattle, Washington, USA, July 2006.

    Google Scholar 

  32. T. Berger. Multiterminal rate-distortion theory revisited. In Communication, Control, and Computing, 2008 46th Annual Allerton Conference, pages 1535–1537, September 2008.

    Google Scholar 

  33. Y. Oohama. Gaussian multiterminal source coding. IEEE Transactions on Information Theory, 43(6):1912–1923, November 1997.

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Oohama, Rate-distortion theory for gaussian multiterminal source coding systems with several side informations at the decoder. IEEE Transactions on Information Theory, 51(7):2577–2593, July 2005.

    Article  MathSciNet  Google Scholar 

  35. Y. Yang, V. Stankovic, Z. Xiong, and W. Zhao. On multiterminal source code design. In Data Compression Conference, 2005. Proceedings. DCC 2005, pages 43–52, Snowbird, Utah, USA, March 2005.

    Google Scholar 

  36. Y. Zhang, Z. Xiong, and Y. Yang. Code design for quadratic gaussian multiterminal source coding: The symmetric case. In: IEEE International Symposium on Information Theory, 28:1458–1462, July 3, 2009.

    Google Scholar 

  37. A. Wyner and J. Ziv. The rate-distortion function for source coding with side information at the decoder. IEEE Transactions on Information Theory, 22(1):1–10, January 1976.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Zamir, S. Shamai, and U. Erez. Nested linear/lattice codes for structured multiterminal binning. IEEE Transactions on Information Theory, 48(6):1250–1276, June 2002.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Servetto, Lattice quantization with side information: Codes, asymptotics, and applications in sensor networks. IEEE Transactions on Information Theory, 53(2):714–731, February 2007.

    Article  MathSciNet  Google Scholar 

  40. Z. Liu, S. Cheng, A. Liveris, and Z. Xiong. Slepian-wolf coded nested quantization (swc-nq) for wyner-ziv coding: performance analysis and code design. In: Data Compression Conference, 2004. Proceedings. DCC 2004, pages 322–331, March 2004.

    Google Scholar 

  41. B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero. Distributed video coding. Proceedings of the IEEE, 93(1):71–83, January 2005.

    Article  Google Scholar 

  42. Y. Yang, S. Cheng, Z. Xiong, and W. Zhao. Wyner-ziv coding based on tcq and ldpc codes. IEEE Transactions on Communications, 57(2):376–387, February 2009.

    Article  Google Scholar 

  43. T. Berger, Z. Zhang, and H. Viswanathan. The ceo problem [multiterminal source coding]. IEEE Transactions on Information Theory, 42(3):887–902, May 1996.

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Viswanathan and T. Berger. The quadratic gaussian ceo problem. IEEE Transactions on Information Theory, 43(5):1549–1559, September 1997.

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Oohama. The rate-distortion function for the quadratic gaussian ceo problem. IEEE Transactions on Information Theory, 44(3):1057–1070, May 1998.

    Article  MathSciNet  MATH  Google Scholar 

  46. V. Prabhakaran, D. Tse, and K. Ramachandran. Rate region of the quadratic gaussian ceo problem. In: IEEE International Symposium on Information Theory, page 119, June-2 July 2004.

    Google Scholar 

  47. J.-H. Chang and L. Tassiulas. Maximum lifetime routing in wireless sensor networks. IEEE/ACM Transactions on Networking, 12(4):609–619, August 2004.

    Article  Google Scholar 

  48. T. S. Han. Slepian-wolf-cover theorem for networks of channels. Information and Control, 47(1):67–83, October 1980.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Barros and S. Servetto. Network information flow with correlated sources. IEEE Transactions on Information Theory, (52):155–170, January 2006.

    Google Scholar 

  50. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, New Jersey, 1993.

    Google Scholar 

  51. S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, Cambridge, 2004.

    MATH  Google Scholar 

  52. A. Roumy and D. Gesbert, Optimal matching in wireless sensor networks. IEEE Journal of Selected Topics in Signal Processing, 1(4):725–735, December 2007.

    Article  Google Scholar 

  53. S. Li and A. Ramamoorthy. Rate and power allocation under the pairwise distributed source coding constraint. IEEE Transactions on Communications, 57(12), December 2009.

    Google Scholar 

  54. Y. J. Chu and T. H. Liu, On the shortest arborescence of a directed graph. Science Sinica, 14:1396–1400, 1965.

    MATH  Google Scholar 

  55. R. Cristescu and B. Beferull-Lozano. Lossy network correlated data gathering with high-resolution coding. IEEE Transactions on Information Theory, 52(6):2817–2824, June 2006.

    Article  MathSciNet  Google Scholar 

  56. R. Giles. Optimum matching forests I: Special weights. Mathematical Programming, 22(1):1–11, December 1982.

    Article  MathSciNet  MATH  Google Scholar 

  57. R. Giles, Optimum matching forests ii: General weights. Mathematical Programming, 22(1):12–38, December 1982.

    Article  MathSciNet  MATH  Google Scholar 

  58. R. Cristescu, B. Beferull-Lozano, and M. Vetterli. Networked slepian-wolf: theory, algorithms, and scaling laws. IEEE Transactions on Information Theory, 51(12):4057–4073, December 2005.

    Article  MathSciNet  Google Scholar 

  59. D. Tse and S. Hanly. Multiaccess fading channels. i. polymatroid structure, optimal resource allocation and throughput capacities. IEEE Transactions on Information Theory, 44(7):2796–2815, November 1998.

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Liu, M. Adler, D. Towsley, and C. Zhang. On optimal communication cost for gathering correlated data through wireless sensor networks. In: ACM MobiCom, Los Angeles, CA, USA, 2006.

    Google Scholar 

  61. J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, New York, NY, 2005.

    Google Scholar 

  62. S.-Y. Li, R. W. Yeung, and N. Cai. Linear Network Coding. IEEE Transactions on Information Theory, 49(2):371–381, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Koetter and M. Médard. An algebraic approach to network coding. IEEE/ACM Transactions on Networking, 11(5):782–795, 2003.

    Article  Google Scholar 

  64. T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong. A random linear network coding approach to multicast. IEEE Transactions on Information Theory, 52(10):4413–4430, 2006.

    Article  MathSciNet  Google Scholar 

  65. P. A. Chou, Y. Wu, and K. Jain. Practical network coding. In: 41st Allerton Conference on Communication, Control, and Computing, 2003.

    Google Scholar 

  66. T. S. Han. Multicasting of correlated multisource to multisink over a network. preprint, 2009. [Online]. Available: http://arxiv.org/abs/0901.0608

  67. L. Song and R. W.Yeung. Network information flow – multiple sources. In: Proceedings of Intl Symp. Information Theory, Washington DC, USA, 2001.

    Google Scholar 

  68. A. Ramamoorthy, K. Jain, P. A. Chou, and M. Effros. Separating Distributed Source Coding from Network Coding, IEEE Transactions on Information Theory, 52:2785–2795, June 2006.

    Article  MathSciNet  Google Scholar 

  69. Y. Wu, V. Stankovic, Z. Xiong, and S.-Y. Kung. On practical design for joint distributed source and network coding. IEEE Transactions on Information Theory, 55(4):1709–1720, 2009.

    Article  MathSciNet  Google Scholar 

  70. A. Ramamoorthy. Communicating the sum of sources over a network. In Proceedings of International Symposium Information Theory, pages 1646–1650, Toronto, ON, Canada, 2008.

    Google Scholar 

  71. A. Ramamoorthy and M. Langberg. Communicating the sum of sources in a 3-sources/3-terminals network. In Proceedings of International Symposium Information Theory, pages 2121–2125, Seoul, Korea, 2009.

    Google Scholar 

  72. A. Ramamoorthy and M. Langberg. Communicating the sum of sources over a network. preprint, 2010. [Online]. Available: http://arxiv.org/abs/1001.5319

  73. A. Ramamoorthy. Minimum cost distributed source coding over a network. In: IEEE International Symposium on Information Theory, pages 1761–1765, Nice, France, 2007.

    Google Scholar 

  74. A. Ramamoorthy, Minimum cost distributed source coding over a network. In: IEEE Transactions on Information Theory

    Google Scholar 

  75. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Nashua, NH, 1999.

    MATH  Google Scholar 

  76. H. D. Sherali and G. Choi. Recovery of primal solutions when using subgradient optimization methods to solve lagrangian duals of linear programs. Operations Research Letters, 19(3):105–113, 1996.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSF grant CNS-0721453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, S., Ramamoorthy, A. (2011). Networked Distributed Source Coding. In: Nikoletseas, S., Rolim, J. (eds) Theoretical Aspects of Distributed Computing in Sensor Networks. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14849-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14849-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14848-4

  • Online ISBN: 978-3-642-14849-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics