Skip to main content

Maintaining Connectivity in Sensor Networks Using Directional Antennae

  • Chapter
  • First Online:

Abstract

Connectivity in wireless sensor networks may be established using either omnidirectional or directional antennae. The former radiate power uniformly in all directions while the latter emit greater power in a specified direction thus achieving increased transmission range and encountering reduced interference from unwanted sources. Regardless of the type of antenna being used the transmission cost of each antenna is proportional to the coverage area of the antenna. It is of interest to design efficient algorithms that minimize the overall transmission cost while at the same time maintaining network connectivity. Consider a set S of n points in the plane modeling sensors of an ad hoc network. Each sensor is equipped with a fixed number of directional antennae modeled as a circular sector with a given spread (or angle) and range (or radius). Construct a network with the sensors as the nodes and with directed edges (u,v) connecting sensors u and v if v lies within u’s sector. We survey recent algorithms and study trade-offs on the maximum angle, sum of angles, maximum range, and the number of antennae per sensor for the problem of establishing strongly connected networks of sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In all figures boldface arrows represent the newly added edges.

References

  1. M. Abellanas, A. García, F. Hurtado, J. Tejel, and J. Urrutia. Augmenting the connectivity of geometric graphs. Computational Geometry: Theory and Applications, 40(3):220–230, 2008.

    MATH  MathSciNet  Google Scholar 

  2. S. Arora and K. Chang. Approximation Schemes for Degree-Restricted MST and Red–Blue Separation Problems. Algorithmica, 40(3):189–210, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Bao and J. J. Garcia-Luna-Aceves. Transmission scheduling in ad hoc networks with directional antennas. Proceedings of the 8th Annual International Conference on Mobile Computing and Networking, pages 48–58, Atlanta, Georgia, USA, 2002.

    Google Scholar 

  4. B. Bhattacharya, Y Hu, E. Kranakis, D. Krizanc, and Q. Shi. Sensor Network Connectivity with Multiple Directional Antennae of a Given Angular Sum. 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2009), May 25–29, Rome, Italy, 2009.

    Google Scholar 

  5. I. Caragiannis, C. Kaklamanis, E. Kranakis, D. Krizanc, and A. Wiese. Communication in Wireless Networks with Directional Antennae. In proceedings of 20th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’08), June 14–16, pages 344–351, Munich, Germany, 2008.

    Google Scholar 

  6. T. M. Chan. Euclidean bounded-degree spanning tree ratios. Discrete and Computational Geometry, 32(2):177–194, 2004.

    MATH  MathSciNet  Google Scholar 

  7. E. Chávez, S. Dobrev, E. Kranakis, J. Opatrny, L. Stacho, and J. Urrutia. Local Construction of Planar Spanners in Unit Disk Graphs with Irregular Transmission Ranges. In LATIN 2006, LNCS, Vol. 3887, pages 286–297, 2006.

    Google Scholar 

  8. J. Cheriyan, A. Sebö, and Z. Szigeti. An Improved Approximation Algorithm for Minimum Size 2-Edge Connected Spanning Subgraphs. In Proceedings of the 6th International IPCO Conference on Integer Programming and Combinatorial Optimization, Vol. 1412, pages 126–136. Springer, Berlin, 1998.

    Google Scholar 

  9. J. Czyzowicz, S. Dobrev, H. Gonzalez-Aguilar, R. Kralovic, E. Kranakis, J. Opatrny, L. Stacho, and J. Urrutia. Local 7-Coloring for Planar Subgraphs of Unit Disk Graphs. In Theory and Applications of Models of Computation: 5th International Conference, TAMC 2008, Xi’an, China, April 25-29, 2008; Proceedings, vol. 4978, pages 170–181. Springer, Berlin, 2008.

    Google Scholar 

  10. S. Dobrev, E. Kranakis, D. Krizanc, O. Morales, J. Opatrny, and L. Stacho. Strong connectivity in sensor networks with given number of directional antennae of bounded angle, 2010. COCOA 2010, to appear.

    Google Scholar 

  11. Q. Dong and Y. Bejerano. Building Robust Nomadic Wireless Mesh Networks Using Directional Antennas. In IEEE INFOCOM 2008. The 27th Conference on Computer Communications, pages 1624–1632, Phoenix, AZ, USA, 2008.

    Google Scholar 

  12. H. Fleischner. The square of every two-connected graph is Hamiltonian. Journal of Combinatorial Theory, 3:29–34, 1974.

    Article  MathSciNet  Google Scholar 

  13. A. Francke and M. Hoffmann. The Euclidean degree-4 minimum spanning tree problem is NP-hard. In Proceedings of the 25th Annual Symposium on Computational Geometry, pages 179–188. ACM, New York, NY, 2009.

    Google Scholar 

  14. T. Fukunaga. Graph Orientations with Set Connectivity Requirements. In Proceedings of the 20th International Symposium on Algorithms and Computation, pages 265–274. Springer, LNCS, Honolulu, Hawaii, 2009.

    Google Scholar 

  15. M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is NP-complete. SIAM Journal on Computing, 5:704, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Gupta and P. R. Kumar. The capacity of wireless networks. Information Theory, IEEE Transactions On, 46(2):388–404, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Hu and D. Evans. Using directional antennas to prevent wormhole attacks. In Network and Distributed System Security Symposium (NDSS), pages 131–141. Internet Society, San Diego, California, USA, 2004.

    Google Scholar 

  18. H. Imai, K. Kobara, and K. Morozov. On the possibility of key agreement using variable directional antenna. In Proc. of 1st Joint Workshop on Information Security,(Korea). IEICE, 2006.

    Google Scholar 

  19. A. Itai, C.H. Papadimitriou, and J.L. Szwarcfiter. Hamilton paths in grid graphs. SIAM Journal on Computing, 11:676, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. R. Jensen and B. Toft. Graph Coloring Problems. Wiley-Interscience, New York, NY, 1996.

    Google Scholar 

  21. S. Khuller, B. Raghavachari, and N. Young. Low degree spanning trees of small weight. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, page 421. ACM, Montreal, Quebec, Canada, 1994.

    Google Scholar 

  22. S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning trees and shortest-path trees. Algorithmica, 14(4):305–321, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Kranakis, D. Krizanc, and J. Urrutia. Coverage and Connectivity in Networks with Directional Sensors. proceedings Euro-Par Conference, Pisa, Italy, August, pages 917–924, Pisa, Italy, 2004.

    Google Scholar 

  24. E. Kranakis, D. Krizanc, and E. Williams. Directional versus omnidirectional antennas for energy consumption and k-connectivity of networks of sensors. Proceedings of OPODIS, 3544:357–368, 2004.

    Google Scholar 

  25. E. Kranakis, O. Morales, and L. Stacho. On orienting planar sensor networks with bounded stretch factor, 2010. Unpublished manuscript.

    Google Scholar 

  26. X. Li, G. Calinescu, P Wan, and Y. Wang. Localized Delaunay Triangulation with Application in Ad Hoc Wireless Networks. IEEE Transactions on Parallel and Distributed Systems, 14:2003, 2003.

    Google Scholar 

  27. X. Lu, F. Wicker, P. Lio, and D. Towsley. Security Estimation Model with Directional Antennas. In IEEE Military Communications Conference, 2008. MILCOM 2008, pages 1–6, 2008.

    Google Scholar 

  28. C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete and Computational Geometry, 8(1):265–293, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  29. C. S. J. A. Nash-Williams. On orientations, connectivity and odd vertex pairings in finite graphs. Canadian Journal of Mathematics, 12:555–567, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  30. V. Navda, A. P. Subramanian, K. Dhanasekaran, A. Timm-Giel, and S. Das. Mobisteer: using steerable beam directional antenna for vehicular network access. In ACM MobiSys, 2007.

    Google Scholar 

  31. R. G. Parker and R. L. Rardin. Guaranteed performance heuristics for the bottleneck traveling salesman problem. Operations Research Letters, 2(6):269–272, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. P. Punnen. Minmax strongly connected subgraphs with node penalties. Journal of Applied Mathematics and Decision Sciences, 2:107–111, 2005.

    Article  MathSciNet  Google Scholar 

  33. R. Ramanathan. On the performance of ad hoc networks with beamforming antennas. Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking & Computing, pages 95–105, Long Beach, CA, USA, 2001.

    Google Scholar 

  34. D. Rappaport. Computing simple circuits from a set of line segments is NP-complete. SIAM Journal on Computing, 18(6):1128–1139, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  35. N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four-colour theorem. Journal of Combinatorial Theory Series B, 70(1):2–44, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  36. I. Rutter and A. Wolff. Augmenting the connectivity of planar and geometric graphs. Electronic Notes in Discrete Mathematics, 31:53–56, 2008.

    Article  MathSciNet  Google Scholar 

  37. A. Spyropoulos and C. S. Raghavendra. Energy efficient communications in ad hoc networks using directional antennas. INFOCOM 2002: Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, New York, NY, USA, 2002.

    Google Scholar 

  38. A. Spyropoulos and C. S. Raghavendra. Capacity bounds for ad-hoc networks using directional antennas. ICC’03: IEEE International Conference on Communications, Anchorage, Alaska, USA, 2003.

    Google Scholar 

  39. S. Yi, Y. Pei, and S. Kalyanaraman. On the capacity improvement of ad hoc wireless networks using directional antennas. Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing, pages 108–116, Annapolis, Maryland, USA, 2003.

    Google Scholar 

  40. H. Zhang and X. He. On even triangulations of 2-connected embedded graphs. SIAM Journal on Computing, 34(3):683–696, 2005.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

Many thanks to the anonymous referees for useful suggestions that improved the presentation. Research supported in part by NSERC (Natural Sciences and Engineering Research Council of Canada), MITACS (Mathematics of Information Technology and Complex Systems), and CONACyT (Consejo Nacional de Ciencia y Tecnología) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kranakis, E., Krizanc, D., Morales, O. (2011). Maintaining Connectivity in Sensor Networks Using Directional Antennae. In: Nikoletseas, S., Rolim, J. (eds) Theoretical Aspects of Distributed Computing in Sensor Networks. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14849-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14849-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14848-4

  • Online ISBN: 978-3-642-14849-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics