Skip to main content

Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes

  • Chapter
  • First Online:
  • 1584 Accesses

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Carbon nanotubes (CNTs) exhibit unique size, shape and physical properties, which make them promising candidates for biomedical applications. In particular, carbon nanotubes have been intensively studied for conjugation with pre-existing therapeutic agents for more effective targeting, as a result of their ability to cross cell membranes. However, to utilise them effectively in biological systems it is extremely important to understand how they behave at the cellular level and their distribution in vivo. Additionally, in order to consider carbon nanotubes as candidate delivery systems of therapeutic agents it is important to ascertain their fate in vivo, but also take into account many factors, such as solubility, stability and clearance. Issues surrounding their short term and long term safety are currently the subject of toxicology testing. Herein, we propose to summarize the main findings on the uptake, trafficking and biodistribution of carbon nanotubes, with special focus on functionalized carbon nanotubes for delivery of therapeutic agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang, L., et al.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83(5), 761–769 (2008)

    Article  Google Scholar 

  2. Shaffer, C.: Nanomedicine transforms drug delivery. Drug Discov. Today 10(23–24), 1581–1582 (2005)

    Article  Google Scholar 

  3. Alexis, F., et al.: New frontiers in nanotechnology for cancer treatment. Urol. Oncol. 26(1), 74–85 (2008)

    Article  Google Scholar 

  4. James, N.D., et al.: Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin. Oncol. (R Coll. Radiol.) 6(5), 294–296 (1994)

    Article  Google Scholar 

  5. Muggia, F.M.: Doxil in breast cancer. J. Clin. Oncol. 16(2), 811–812 (1998)

    Article  Google Scholar 

  6. Schluep, T., et al.: Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res. 12(5), 1606–1614 (2006)

    Article  Google Scholar 

  7. Pridgen, E.M., Langer, R., Farokhzad, O.C.: Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2(5), 669–680 (2007)

    Article  Google Scholar 

  8. Romberg, B., Hennink, W.E., Storm, G.: Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 25(1), 55–71 (2008)

    Article  Google Scholar 

  9. Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)

    Google Scholar 

  10. Owens 3rd, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1), 93–102 (2006)

    Article  Google Scholar 

  11. Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)

    Article  Google Scholar 

  12. Simionescu, M., Simionescu, N., Palade, G.E.: Morphometric data on the endothelium of blood capillaries. J. Cell Biol. 60(1), 128–152 (1974)

    Article  Google Scholar 

  13. Brigham, K.L.: Estimations of permeability properties of pulmonary capillaries (continuous endothelium). Physiologist 23(1), 44–46 (1980)

    Google Scholar 

  14. Ryan, U.S., et al.: Fenestrated endothelium of the adrenal gland: freeze-fracture studies. Tissue Cell 7(1), 181–190 (1975)

    Article  Google Scholar 

  15. Braet, F., et al.: Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc. Res. Tech. 70(3), 230–242 (2007)

    Article  Google Scholar 

  16. Maeda, H.: The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001)

    Article  Google Scholar 

  17. Greish, K.: Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target. 15(7–8), 457–464 (2007)

    Article  Google Scholar 

  18. Hobbs, S.K., et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95(8), 4607–4612 (1998)

    Article  Google Scholar 

  19. Sanhai, W.R., et al.: Seven challenges for nanomedicine. Nat. Nanotechnol. 3(5), 242–244 (2008)

    Article  Google Scholar 

  20. Pantarotto, D., et al.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (1), 16–17 (2004)

    Google Scholar 

  21. Pantarotto, D., et al.: Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004)

    Article  Google Scholar 

  22. Kostarelos, K., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2), 108–113 (2007)

    Article  Google Scholar 

  23. Lopez, C.F., et al.: Understanding nature’s design for a nanosyringe. Proc. Natl. Acad. Sci. USA 101(13), 4431–4434 (2004)

    Article  Google Scholar 

  24. Kam, N.W.S., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126(22), 6850–6851 (2004)

    Article  Google Scholar 

  25. Kam, N.W.S., Dai, H.J.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127(16), 6021–6026 (2005)

    Article  Google Scholar 

  26. Kam, N.W.S., Liu, Z.A., Dai, H.J.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45(4), 577–581 (2006)

    Article  Google Scholar 

  27. Cherukuri, P., et al.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126(48), 15638–15639 (2004)

    Article  Google Scholar 

  28. Meinke, M., et al.: Chemometric determination of blood parameters using visible-near-infrared spectra. Appl. Spectrosc. 59(6), 826–835 (2005)

    Article  Google Scholar 

  29. Becker, M.L., et al.: Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 19(7), 939–945 (2007)

    Article  Google Scholar 

  30. Heller, D.A., et al.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005)

    Article  Google Scholar 

  31. Jorio, A., et al.: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86(6), 1118–1121 (2001)

    Article  Google Scholar 

  32. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Book  MATH  Google Scholar 

  33. Strano, M.S., et al.: Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett. 3(8), 1091–1096 (2003)

    Article  Google Scholar 

  34. Doorn, S.K., et al.: Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A Mater. Sci. Process. 78(8), 1147–1155 (2004)

    Article  Google Scholar 

  35. Chin, S.F., et al.: Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp. Biol. Med. 232(9), 1236–1244 (2007)

    Article  Google Scholar 

  36. Yehia, H., et al.: Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnol. 5(1), 8 (2007)

    Article  Google Scholar 

  37. Lamprecht, C., et al.: AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 20(43), 434001–434007 (2009)

    Article  Google Scholar 

  38. Jin, H., Heller, D.A., Strano, M.S.: Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 8(6), 1577–1585 (2008)

    Article  Google Scholar 

  39. Chithrani, B.D., Chan, W.C.W.: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7(6), 1542–1550 (2007)

    Article  Google Scholar 

  40. Jin, H., et al.: Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1), 149–158 (2009)

    Article  Google Scholar 

  41. Lacerda, L., et al.: Intracellular trafficking of carbon nanotubes by confocal laser scanning microscopy. Adv. Mater. 19(11), 1480–1484 (2007)

    Article  Google Scholar 

  42. Singh, R., et al.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 103, 3357–3362 (2006)

    Article  Google Scholar 

  43. Maynard, A.D., et al.: Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health. A 67(1), 87–107 (2004)

    Article  Google Scholar 

  44. Huczko, A., et al.: Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B 109(34), 16244–16251 (2005)

    Article  Google Scholar 

  45. Lam, C.W., et al.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)

    Article  Google Scholar 

  46. Warheit, D.B., et al.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004)

    Article  Google Scholar 

  47. Shvedova, A.A., et al.: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289(5), L698–L708 (2005)

    Article  Google Scholar 

  48. Yokoyama, A., et al.: Biological behavior of hat-stacked carbon nanofibers in the subcutaneous tissue in rats. Nano Lett. 5(1), 157–161 (2005)

    Article  Google Scholar 

  49. Sato, Y., et al.: Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. Biosyst. 1(2), 176–182 (2005)

    Article  Google Scholar 

  50. Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sitharaman, B., Wilson, L.J., Hughes, J.B., West, J.L., Colvin, V.L.: The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4(10), 1881–1887 (2004)

    Article  Google Scholar 

  51. Sayes, C.M., et al.: Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161(2), 135–142 (2006)

    Article  Google Scholar 

  52. Wang, H., et al.: Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4(8), 1019–1024 (2004)

    Article  Google Scholar 

  53. Lacerda, L., et al.: Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 20(2), 225–230 (2008)

    Article  Google Scholar 

  54. Lacerda, L., et al.: Carbon-nanotube shape and individualization critical for renal excretion. Small 4(8), 1130–1132 (2008)

    Article  Google Scholar 

  55. Lacerda, L., et al.: Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3(2), 149–161 (2008)

    Article  Google Scholar 

  56. Cherukuri, P., et al.: Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA 103(50), 18882–18886 (2006)

    Article  Google Scholar 

  57. Liu, Z., et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47–52 (2007)

    Article  Google Scholar 

  58. Zavaleta, C., et al.: Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8(9), 2800–2805 (2008)

    Article  Google Scholar 

  59. Liu, Z., et al.: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105(5), 1410–1415 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Neves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neves, V., Coley, H.M., McFadden, J., Silva, S.R.P. (2011). Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes. In: Klingeler, R., Sim, R. (eds) Carbon Nanotubes for Biomedical Applications. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14802-6_9

Download citation

Publish with us

Policies and ethics