Skip to main content

Filling of Carbon Nanotubes: Containers for Magnetic Probes and Drug Delivery

  • Chapter
  • First Online:

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Nanotechnology is a broad scientific field but one of the most explored materials in nanotechnology is carbon nanotube (CNT). A large proportion of research on CNTs is focused on their huge potential for biomedical applications. Within this context, the synthesis of carbon nanotubes filled with magnetic materials has been widely investigated, especially with iron due to its excellent ferromagnetic characteristics. Pure iron-filled carbon nanotubes (Fe-CNT) can be prepared following diverse routes. Here, an overview of the different preparation routes of Fe-CNT, using the chemical vapour deposition (CVD) synthesis method will be presented. Several working parameters were varied and investigated, the most significant being the pressure of the system, the iron and the carbon sources. The consequence of these modifications is reflected in the structure of the final material, which varies in respect of the amount of iron encapsulated in the cavity, tube diameter and the number of graphitic walls forming the CNT. The filling of hollow CNT through wet chemistry reactions (as a post-synthesis route) and CVD process (filling during the synthesis of CNTs) will also be addressed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ajima, K., et al.: Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2, 475–480 (2005)

    Article  Google Scholar 

  2. Ajima, K., et al.: Optimum hole-opening condition for cisplatin incorporation in single-wall carbon nanohorns and its release. J. Phys. Chem. B 110, 5773–5778 (2006a)

    Article  Google Scholar 

  3. Ajima, K., et al.: Effect of functional groups at hole edges on cisplatin release from inside single-wall carbon nanohorns. J. Phys. Chem. B 110, 19097–19099 (2006b)

    Article  Google Scholar 

  4. Bianco, A., et al.: Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 5, 571–7 (2005)

    Article  Google Scholar 

  5. Borowiak-Palen, E.: Single-walled carbon nanotubes as nanotest tubes. Physica Status Solidi B 244(11), 4311–4314 (2007)

    Article  Google Scholar 

  6. Chin, S.-F., et al.: Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp. Biol. Med. 232, 1236–1244 (2007)

    Article  Google Scholar 

  7. Clare, B.W., Kepert, D.L.: Opening of carbon nanotubes by addition of oxygen. Inorg. Chim. Acta 343, 1–17 (2003)

    Article  Google Scholar 

  8. Costa, S., Borowiak-Palen, E.: Comparative study on homogeneity, filling ration and purity of iron filled multiwalled carbon nanostructures. Eur. Phys. J. B (2010). doi:10.1140/epjb/e2010-00070-1

  9. Costa, S., Borowiak-Palen, E., Bachmatiuk, A., Rummeli, M., Gemming, T., Kalenczuk, R.: Filling of carbon nanotubes for bio-applications. Physica Status Solidi B 244, 4315–4318 (2007)

    Article  Google Scholar 

  10. Costa, S., et al.: Iron filled carbon nanostructures from different precursors. Energy Convers. Manag. 49(9), 2483–2486 (2008)

    Article  Google Scholar 

  11. Deng, X., et al.: The splenic toxicity of water soluble multi-walled carbon nanotubes in mice. Carbon 47, 1421–1428 (2009)

    Article  Google Scholar 

  12. Dhar, S., et al.: Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 130, 11467–11476 (2008)

    Article  Google Scholar 

  13. Dumortier, H., et al.: Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6, 1522–1528 (2006)

    Article  Google Scholar 

  14. Eastman, A.: Interstrand cross-links and sequence specificity in the reaction of cis-dichloro(ethylenediamine)platinum (II) with DNA. Biochemistry 25, 5027–5032 (1986a)

    Article  Google Scholar 

  15. Eastman, A.: Reevaluation of interaction of cis-dichloro(ethylenediamineplatinum(II) with DNA. Biochemistry 25, 3912–3915 (1986b)

    Article  Google Scholar 

  16. Feazell, R.P., et al.: Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129(27), 8438–8439 (2007)

    Article  Google Scholar 

  17. Geng, F., Cong, H.: Fe-filled carbon nanotube array with high coercivity. Physica B Condens. Matter 382(1–2), 300–304 (2006)

    Article  Google Scholar 

  18. Hampel, S., et al.: Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 44(11), 2316–2322 (2006)

    Article  Google Scholar 

  19. Hampel, S., et al.: Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3, 175–182 (2008)

    Article  Google Scholar 

  20. Heller, D.A., et al.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–99 (2005)

    Article  Google Scholar 

  21. Hildebrandt, B., et al.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002)

    Article  Google Scholar 

  22. Hilder, T.A., et al.: Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology 18, 275704–275712 (2007)

    Article  Google Scholar 

  23. Hu, C.-C., Su, J.-H., Wen, T.-C.: Modification of multi-walled carbon nanotubes for electric double-layer capacitors: tube opening and surface functionalization. J. Phys. Chem. Solids 68(12), 2353–2362 (2007)

    Article  Google Scholar 

  24. Iijima, S., et al.: Carbon nanotube technology. Nec Tech. J. 2(1), 52–55 (2007)

    Google Scholar 

  25. Jain, D., Wilhelm, R.: An easy way to produce [alpha]-iron filled multiwalled carbon nanotubes. Carbon 45(3), 602–606 (2007)

    Article  Google Scholar 

  26. Jorge, J., et al.: Preparation and characterization of [alpha]-Fe nanowires located inside double wall carbon nanotubes. Chem. Phys. Lett. 457(4–6), 347–351 (2008)

    Article  Google Scholar 

  27. Kam, N.W.S., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)

    Article  Google Scholar 

  28. Kim, H., Sigmund, W.: Iron particles in carbon nanotubes. Carbon 43(8), 1743–1748 (2005)

    Article  Google Scholar 

  29. Kostarelos, K., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2006a)

    Article  Google Scholar 

  30. Lacerda, L., et al.: Cell penetrating CNTs for delivery of therapeutics. Nanotoday 2, 38–43 (2007)

    Article  Google Scholar 

  31. Leonhardt, A., et al.: Synthesis and properties of filled carbon nanotubes. Diam. Relat. Mater. 12(3–7), 790–793 (2003)

    Article  Google Scholar 

  32. Levi-Polyachenko, N.H., et al.: Multi-walled carbon nanotubes increase the efficiency of hyperthermic chemotherapy. Nanotech 2, 57–60 (2008)

    Google Scholar 

  33. Liu, Z.-J., et al.: Preparation of Fe-filled carbon nanotubes by catalytic decomposition of cyclohexane. Synth. Met. 128(2), 191–195 (2002)

    Article  Google Scholar 

  34. Liu, Z., et al.: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1), 50–56 (2007)

    Article  Google Scholar 

  35. Lu, Y., Zhu, Z., Liu, Z.: Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43(2), 369–374 (2005)

    Article  Google Scholar 

  36. Mohlala, M.S., Liu, X.-Y., Coville, N.J.: Synthesis of multi-walled carbon nanotubes catalyzed by substituted ferrocenes. J. Organomet. Chem. 691(22), 4768–4772 (2006)

    Article  Google Scholar 

  37. Muller, C., Leonhardt, A., Kutz, A.C., Büchner, B.: Growth aspects of iron-filled carbon nanotubes obtained by catalytic chemical vapor deposition of ferrocene. J. Phys. Chem. C 113, 2736–2740 (2009)

    Article  Google Scholar 

  38. Müller, C., et al.: Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties. Carbon 44(9), 1746–1753 (2006)

    Article  Google Scholar 

  39. Qiu, J., et al.: CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide. Carbon 44(12), 2565–2568 (2006)

    Article  Google Scholar 

  40. Raymundo-Piñero, E., et al.: A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes. Chem. Phys. Lett. 412(1–3), 184–189 (2005)

    Article  Google Scholar 

  41. Rosenberg, B.: Some biological effects of platinum compounds. Platinum Metals Rev, 15, 42-51 (1971)

    Google Scholar 

  42. Sano, N., et al.: Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41(11), 2159–2162 (2003)

    Article  Google Scholar 

  43. Seifu, D., et al.: Chemical method of filling carbon nanotubes with magnetic material. J. Magn. Magn. Mater. 320(3–4), 312–315 (2008)

    Article  Google Scholar 

  44. Simon, F., et al.: Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem. Phys. Lett. 383, 362 (2004)

    Article  Google Scholar 

  45. Singh, C., et al.: Production of aligned carbon nanotubes by the CVD injection method. Physica B Condens. Matter 323(1–4), 339–340 (2002)

    Google Scholar 

  46. Smith, B.W., et al.: Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chem. Phys. Lett. 315, 31–36 (1999)

    Article  Google Scholar 

  47. Takenobu, T., et al.: Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2, 683–688 (2003)

    Article  Google Scholar 

  48. Tripisciano, C., et al.: Cisplatin functionalized single-walled carbon nanotubes. Physica Status Solidi B 245, 1979–1982 (2008)

    Article  Google Scholar 

  49. Tripisciano, C., et al.: Single-wall carbon nanotubes based anticancer drug delivery system. Chem. Phys. Lett. 478, 200–205 (2009)

    Article  Google Scholar 

  50. Tsang, S.C., et al.: A simple chemical method of opening and filling carbon nanotubes. Nature 372(6502), 159–162 (1994)

    Article  Google Scholar 

  51. Van der Zee, J.: Heating the patient: a promising approach? Ann. Oncol. 13, 1173–1184 (2002)

    Article  Google Scholar 

  52. Wang, W., et al.: Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor. Carbon 45(5), 1127–1129 (2007)

    Article  Google Scholar 

  53. Wust, P., et al.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002)

    Article  Google Scholar 

  54. Yanagi, K., et al.: Highly stabilized β-carotene in carbon nanotubes. Adv. Mater. 18, 437–441 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Borowiak-Palen or C. Tripisciano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borowiak-Palen, E., Tripisciano, C., Rümmeli, M., Costa, S., Chen, X., Kalenczuk, R.J. (2011). Filling of Carbon Nanotubes: Containers for Magnetic Probes and Drug Delivery. In: Klingeler, R., Sim, R. (eds) Carbon Nanotubes for Biomedical Applications. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14802-6_4

Download citation

Publish with us

Policies and ethics