Skip to main content

The Chromatoid Body: A Specialized RNA Granule of Male Germ Cells

  • Chapter
  • First Online:
Epigenetics and Human Reproduction

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

RNA processing and miRNA pathways have been shown to exert a central control on a wide variety of cellular functions. The epigenetic program of male germ cells is highly specialized, including RNA processing pathways, which play an important role in the male germ cell lineage. Male germ cells differentiate through a remarkable process of cellular restructuring. One highly specialized structure is the chromatoid body (CB), a male reproductive cell-specific organelle that appears in spermatocytes and spermatids. It is a finely filamentous, lobulated perinuclear granule located in the cytoplasm of male germ cells. The molecular composition and function of the chromatoid body have remained elusive for a longtime. Accumulating evidence indicates that the CB is involved in RNA storing and metabolism, being related to the RNA processing body (P-body) of somatic cells. We propose that the CB operates as an intracellular nerve-center of the microRNA pathway. The role of the chromatoid body underscores the importance of posttranscriptional gene regulation and of the microRNA pathway in the control of postmeiotic male germ cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172(6):803–808

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10(6):430–436

    Article  PubMed  CAS  Google Scholar 

  • Andonov MD, Chaldakov GN (1989) Morphological evidence for calcium storage in the chromatoid body of rat spermatids. Experientia 45(4):377–378

    Article  PubMed  CAS  Google Scholar 

  • Anton E (1983) Association of Golgi vesicles containing acid phosphatase with the chromatoid body of rat spermatids. Experientia 39(4):393–394

    Article  PubMed  CAS  Google Scholar 

  • Aravin A, Gaidatzis D et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207

    PubMed  CAS  Google Scholar 

  • Aravin AA, Sachidanandam R et al (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316(5825):744–747

    Article  PubMed  CAS  Google Scholar 

  • Bardsley A, McDonald K et al (1993) Distribution of tudor protein in the Drosophila embryo suggests separation of functions based on site of localization. Development 119(1):207–219

    PubMed  CAS  Google Scholar 

  • Biggiogera M, Fakan S et al (1990) Immunoelectron microscopical visualization of ribonucleoproteins in the chromatoid body of mouse spermatids. Mol Reprod Dev 26(2):150–158

    Article  PubMed  CAS  Google Scholar 

  • Braun RE (1998) Post-transcriptional control of gene expression during spermatogenesis. Semin Cell Dev Biol 9(4):483–489

    Article  PubMed  CAS  Google Scholar 

  • Brengues M, Teixeira D et al (2005) Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310(5747):486–489

    Article  PubMed  CAS  Google Scholar 

  • Carmell MA, Xuan Z et al (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16(21):2733–2742

    Article  PubMed  CAS  Google Scholar 

  • Carmell MA, Girard A et al (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12(4):503–514

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Jin J et al (2009) Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc Natl Acad Sci USA 106(48):20336–20341

    Article  PubMed  CAS  Google Scholar 

  • Chennathukuzhi V, Morales CR et al (2003a) The kinesin KIF17b and RNA-binding protein TB-RBP transport specific cAMP-responsive element modulator-regulated mRNAs in male germ cells. Proc Natl Acad Sci USA 100(26):15566–15571

    Article  PubMed  CAS  Google Scholar 

  • Chennathukuzhi V, Stein JM et al (2003b) Mice deficient for testis-brain RNA-binding protein exhibit a coordinate loss of TRAX, reduced fertility, altered gene expression in the brain, and behavioral changes. Mol Cell Biol 23(18):6419–6434

    Article  PubMed  CAS  Google Scholar 

  • Chuma S, Hiyoshi M et al (2003) Mouse Tudor Repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs. Mech Dev 120(9):979–990

    Article  PubMed  CAS  Google Scholar 

  • Chuma S, Hosokawa M et al (2006) Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Natl Acad Sci USA 103(43):15894–15899

    Article  PubMed  CAS  Google Scholar 

  • Coller J, Parker R (2005) General translational repression by activators of mRNA decapping. Cell 122(6):875–886

    Article  PubMed  CAS  Google Scholar 

  • Costa Y, Speed RM et al (2006) Mouse MAELSTROM: the link between meiotic silencing of unsynapsed chromatin and microRNA pathway? Hum Mol Genet 15(15):2324–2334

    Article  PubMed  CAS  Google Scholar 

  • Cougot N, Babajko S et al (2004) Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165(1):31–40

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Lin H (2002) Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2(6):819–830

    Article  PubMed  CAS  Google Scholar 

  • Eddy EM, O’Brien DA (1998) Gene expression during mammalian meiosis. Curr Top Dev Biol 37:141–200

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Behm-Ansmant I et al (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8(1):9–22

    Article  PubMed  CAS  Google Scholar 

  • Ewing LL, Davis JC et al (1980) Regulation of testicular function: a spatial and temporal view. Int Rev Physiol 22:41–115

    PubMed  CAS  Google Scholar 

  • Fawcett DW, Eddy EM et al (1970) Observations on the fine structure and relationships of the chromatoid body in mammalian spermatogenesis. Biol Reprod 2(1):129–153

    Article  PubMed  CAS  Google Scholar 

  • Fimia GM, De Cesare D et al (1999) CBP-independent activation of CREM and CREB by the LIM-only protein ACT. Nature 398(6723):165–169

    Article  PubMed  CAS  Google Scholar 

  • Foulkes NS, Schlotter F et al (1993) Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature 362(6417):264–267

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, Komiya T et al (1994) Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci USA 91(25):12258–12262

    Article  PubMed  CAS  Google Scholar 

  • Girard A, Sachidanandam R et al (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442(7099):199–202

    PubMed  Google Scholar 

  • Golumbeski GS, Bardsley A et al (1991) Tudor, a posterior-group gene of Drosophila melanogaster, encodes a novel protein and an mRNA localized during mid-oogenesis. Genes Dev 5(11):2060–2070

    Article  PubMed  CAS  Google Scholar 

  • Grivna ST, Beyret E et al (2006a) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20(13):1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Grivna ST, Pyhtila B et al (2006b) MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci USA 103(36):13415–13420

    Article  PubMed  CAS  Google Scholar 

  • Haase AD, Jaskiewicz L et al (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6(10):961–967

    Article  PubMed  CAS  Google Scholar 

  • Haley B, Zamore PD (2004) Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 11(7):599–606

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi CM, Mabuchi T et al (2005) Chromatoid bodies: aggresome-like characteristics and degradation sites for organelles of spermiogenic cells. J Histochem Cytochem 53(4):455–465

    Article  PubMed  CAS  Google Scholar 

  • Head JR, Kresge CK (1985) Reaction of the chromatoid body with a monoclonal antibody to a rat histocompatibility antigen. Biol Reprod 33(4):1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Hecht NB (1998) Molecular mechanisms of male germ cell differentiation. Bioessays 20(7):555–561

    Article  PubMed  CAS  Google Scholar 

  • Hess RA, Miller LA et al (1993) Immunoelectron microscopic localization of testicular and somatic cytochromes c in the seminiferous epithelium of the rat. Biol Reprod 48(6):1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa M, Shoji M et al (2007) Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: domain composition, intracellular localization, and function in male germ cells in mice. Dev Biol 301(1):38–52

    Article  PubMed  CAS  Google Scholar 

  • Jankowsky E, Bowers H (2006) Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases. Nucleic Acids Res 34(15):4181–4188

    Article  PubMed  CAS  Google Scholar 

  • Kashiwabara S, Noguchi J et al (2002) Regulation of spermatogenesis by testis-specific, cytoplasmic poly(A) polymerase TPAP. Science 298(5600):1999–2002

    Article  PubMed  CAS  Google Scholar 

  • Kedersha N, Stoecklin G et al (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169(6):871–884

    Article  PubMed  CAS  Google Scholar 

  • Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434(7033):583–589

    Article  PubMed  CAS  Google Scholar 

  • Kleene KC (1993) Multiple controls over the efficiency of translation of the mRNAs encoding transition proteins, protamines, and the mitochondrial capsule selenoprotein in late spermatids in mice. Dev Biol 159(2):720–731

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Kuramochi-Miyagawa S et al (2009) Associations between PIWI proteins and TDRD1/MTR-1 are critical for integrated subcellular localization in murine male germ cells. Genes Cells 14(10):1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Kotaja N, Sassone-Corsi P (2007) The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8(1):85–90

    Article  PubMed  CAS  Google Scholar 

  • Kotaja N, De Cesare D et al (2004) Abnormal sperm in mice with targeted deletion of the act (activator of cAMP-responsive element modulator in testis) gene. Proc Natl Acad Sci USA 101(29):10620–10625

    Article  PubMed  CAS  Google Scholar 

  • Kotaja N, Macho B et al (2005) Microtubule-independent and protein kinase A-mediated function of kinesin KIF17b controls the intracellular transport of activator of CREM in testis (ACT). J Biol Chem 280(36):31739–31745

    Article  PubMed  CAS  Google Scholar 

  • Kotaja N, Bhattacharyya SN et al (2006a) The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 103(8):2647–2652

    Article  PubMed  CAS  Google Scholar 

  • Kotaja N, Lin H et al (2006b) Interplay of PIWI/Argonaute protein MIWI and kinesin KIF17b in chromatoid bodies of male germ cells. J Cell Sci 119(Pt 13):2819–2825

    Article  PubMed  CAS  Google Scholar 

  • Krimer DB, Esponda P (1980) Presence of polysaccharides and proteins in the chromatoid body of mouse spermatids. Cell Biol Int Rep 4(3):265–270

    Article  PubMed  CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T et al (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131(4):839–849

    Article  PubMed  CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Watanabe T et al (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22(7):908–917

    Article  PubMed  CAS  Google Scholar 

  • Lau NC, Seto AG et al (2006) Characterization of the piRNA complex from rat testes. Science 313(5785):363–367

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Haugen HS et al (1995) Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci USA 92(26):12451–12455

    Article  PubMed  CAS  Google Scholar 

  • Liang L, Diehl-Jones W et al (1994) Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120(5):1201–1211

    PubMed  CAS  Google Scholar 

  • Liu J, Carmell MA et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Rivas FV et al (2005a) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7(12):1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Valencia-Sanchez MA et al (2005b) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7(7):719–723

    Article  PubMed  CAS  Google Scholar 

  • Macho B, Brancorsini S et al (2002) CREM-dependent transcription in male germ cells controlled by a kinesin. Science 298(5602):2388–2390

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    Article  PubMed  CAS  Google Scholar 

  • Morales CR, Lefrancois S et al (2002) A TB-RBP and Ter ATPase complex accompanies specific mRNAs from nuclei through the nuclear pores and into intercellular bridges in mouse male germ cells. Dev Biol 246(2):480–494

    Article  PubMed  CAS  Google Scholar 

  • Moussa F, Oko R et al (1994) The immunolocalization of small nuclear ribonucleoprotein particles in testicular cells during the cycle of the seminiferous epithelium of the adult rat. Cell Tissue Res 278(2):363–378

    Article  PubMed  CAS  Google Scholar 

  • Nantel F, Monaco L et al (1996) Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380(6570):159–162

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell KA, Boeke JD (2007) Mighty Piwis defend the germline against genome intruders. Cell 129(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Oakberg EF (1956) Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 99(3):507–516

    Article  PubMed  CAS  Google Scholar 

  • Olsen LC, Aasland R et al (1997) A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech Dev 66(1–2):95–105

    Article  PubMed  CAS  Google Scholar 

  • Paniagua R, Nistal M et al (1985) Presence of ribonucleoproteins and basic proteins in the nuage and intermitochondrial bars of human spermatogonia. J Anat 143:201–206

    PubMed  CAS  Google Scholar 

  • Paronetto MP, Messina V et al (2009) Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. J Cell Biol 185(2):235–249

    Article  PubMed  CAS  Google Scholar 

  • Parvinen M (2005) The chromatoid body in spermatogenesis. Int J Androl 28(4):189–201

    Article  PubMed  Google Scholar 

  • Parvinen M, Parvinen LM (1979) Active movements of the chromatoid body. A possible transport mechanism for haploid gene products. J Cell Biol 80(3):621–628

    Article  PubMed  CAS  Google Scholar 

  • Parvinen M, Kotaja N, Mishra DP, Sassone-Corsi P (2007) The chromatoid body and microRNA pathways in male germ cells. In: The genetics of male infertility. pp 199–209

    Google Scholar 

  • Pillai RS, Bhattacharyya SN et al (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309(5740):1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1(3):reviews1017.1–reviews1017.6

    Article  Google Scholar 

  • Reuter M, Chuma S et al (2009) Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol 16(6):639–646

    Article  PubMed  CAS  Google Scholar 

  • Rossi JJ (2005) RNAi and the P-body connection. Nat Cell Biol 7(7):643–644

    Article  PubMed  CAS  Google Scholar 

  • Rouelle-Rossier VB, Biggiogera M et al (1993) Ultrastructural detection of calcium and magnesium in the chromatoid body of mouse spermatids by electron spectroscopic imaging and electron energy loss spectroscopy. J Histochem Cytochem 41(8):1155–1162

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Shiohama A et al (2003) Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 82(3):323–330

    Article  PubMed  CAS  Google Scholar 

  • Sassone-Corsi P (1997) Transcriptional checkpoints determining the fate of male germ cells. Cell 88(2):163–166

    Article  PubMed  CAS  Google Scholar 

  • Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296(5576):2176–2178

    Article  PubMed  CAS  Google Scholar 

  • Saunders PT, Millar MR et al (1992) Stage-specific expression of rat transition protein 2 mRNA and possible localization to the chromatoid body of step 7 spermatids by in situ hybridization using a nonradioactive riboprobe. Mol Reprod Dev 33(4):385–391

    Article  PubMed  CAS  Google Scholar 

  • Sen GL, Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7(6):633–636

    Article  PubMed  CAS  Google Scholar 

  • Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127(5):891–904

    Article  PubMed  CAS  Google Scholar 

  • Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300(5620):805–808

    Article  PubMed  CAS  Google Scholar 

  • Shibata N, Tsunekawa N et al (2004) Mouse RanBPM is a partner gene to a germline specific RNA helicase, mouse vasa homolog protein. Mol Reprod Dev 67(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom KO, Parvinen M (1976) Incorporation of (3H)uridine by the chromatoid body during rat spermatogenesis. J Cell Biol 70(1):239–246

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6(2):127–138

    Article  PubMed  CAS  Google Scholar 

  • Styhler S, Nakamura A et al (1998) vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 125(9):1569–1578

    PubMed  CAS  Google Scholar 

  • Tanaka SS, Toyooka Y et al (2000) The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 14(7):841–853

    PubMed  CAS  Google Scholar 

  • Tang XM, Lalli MF et al (1982) A cytochemical study of the Golgi apparatus of the spermatid during spermiogenesis in the rat. Am J Anat 163(4):283–294

    Article  PubMed  CAS  Google Scholar 

  • Teixeira D, Sheth U et al (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11(4):371–382

    Article  PubMed  CAS  Google Scholar 

  • Thorne-Tjomsland G, Clermont Y et al (1988) Contribution of the Golgi apparatus components to the formation of the acrosomic system and chromatoid body in rat spermatids. Anat Rec 221(2):591–598

    Article  PubMed  CAS  Google Scholar 

  • Toyooka Y, Tsunekawa N et al (2000) Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev 93(1–2):139–149

    Article  PubMed  CAS  Google Scholar 

  • Tsai-Morris CH, Sheng Y et al (2004) Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is essential for spermatid development and completion of spermatogenesis. Proc Natl Acad Sci USA 101(17):6373–6378

    Article  PubMed  CAS  Google Scholar 

  • Unhavaithaya Y, Hao Y et al (2009) MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J Biol Chem 284(10):6507–6519

    Article  PubMed  CAS  Google Scholar 

  • Vagin VV, Wohlschlegel J et al (2009) Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23(15):1749–1762

    Article  PubMed  CAS  Google Scholar 

  • Vasileva A, Tiedau D et al (2009) Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr Biol 19(8):630–639

    Article  PubMed  CAS  Google Scholar 

  • Ventela S, Toppari J et al (2003) Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol Biol Cell 14(7):2768–2780

    Article  PubMed  CAS  Google Scholar 

  • Walt H, Armbruster BL (1984) Actin and RNA are components of the chromatoid bodies in spermatids of the rat. Cell Tissue Res 236(2):487–490

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Saxe JP et al (2009) Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr Biol 19(8):640–644

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Takeda A et al (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20(13):1732–1743

    Article  PubMed  CAS  Google Scholar 

  • Werner G, Werner K (1995) Immunocytochemical localization of histone H4 in the chromatoid body of rat spermatids. J Submicrosc Cytol Pathol 27(3):325–330

    PubMed  CAS  Google Scholar 

  • Yang J, Medvedev S et al (2005a) The DNA/RNA-binding protein MSY2 marks specific transcripts for cytoplasmic storage in mouse male germ cells. Proc Natl Acad Sci USA 102(5):1513–1518

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Medvedev S et al (2005b) Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc Natl Acad Sci USA 102(16):5755–5760

    Article  PubMed  CAS  Google Scholar 

  • Zhong J, Peters AH et al (1999) A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. Nat Genet 22(2):171–174

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Sassone-Corsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Nagamori, I., Cruickshank, A., Sassone-Corsi, P. (2011). The Chromatoid Body: A Specialized RNA Granule of Male Germ Cells. In: Rousseaux, S., Khochbin, S. (eds) Epigenetics and Human Reproduction. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14773-9_14

Download citation

Publish with us

Policies and ethics