Skip to main content

Epigenetics in Male Reproduction: A Practical Introduction to the Informatics of Next Generation Sequencing

  • Chapter
  • First Online:
Epigenetics and Human Reproduction

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1523 Accesses

Abstract

At fertilization, the male germ cell conveys a richly layered genetic landscape consisting of both DNA and its associated epigenetic information. A systems level understanding of these forms of information could reveal some of the origins of idiopathic male infertility. Characterizing the genetic and epigenetic contributions to fertilization could also offer insight into the root causes of aberrant development. Perhaps some of these elements reflect the fetal origins of adult disease. As a host of new tools and techniques emerge, we have the opportunity to reassess our models of gametogenesis in the male. The challenge is no longer to construct biological models from sparse data but to assimilate a wealth of data being generated by high throughput technologies. By aggregating data from multiple high throughput and targeted experiments, bioinformatics offers potential insight into how genetic and epigenetic information are utilized in the sperm-oocyte system. In this chapter, we will review online resources that can aid in conducting an epigenetic investigation as well as describing approaches to managing second and third generation deep sequencing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDC:

Centers for Disease Control and Prevention

CpG:

CG dinucleotides (linked by a phosphor diester bond hence CpG)

DGE:

Differential gene expression

DoE:

Department of Energy

gDNA:

Genomic DNA

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HMT:

Histone methyltransferase

ICR:

Imprinting control region

JGI:

Joint genome initiative

miRNA:

Micro RNA

NGS:

Next generation sequencing, also referred to as second generation sequencing or “now generation” sequencing (Illumina)

piRNA:

Piwi-interacting RNA

rasiRNA:

Repeat associated small interacting RNAs

sncRNA:

Small non coding RNA

snoRNA:

Small nucleolar RNA

SNP:

Single nucleotide polymorphism

TByte:

Tera Byte, 1012 bytes, 1,000 gigabytes or 1,000,000 megabytes

WGS:

Whole genome sequencing

References

  • Amoreira C, Hindermann W et al (2003) An improved version of the DNA methylation database (MethDB). Nucleic Acids Res 31(1):75–77

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ (1997) Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 13(9):807–813

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ (2004) The developmental origins of well-being. Philos Trans R Soc Lond B Biol Sci 359(1449):1359–1366

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei MS (2009) Genomic imprinting: employing and avoiding epigenetic processes. Genes Dev 23(18):2124–2133

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Quackenbush J (2009) Bioinformatics for next generation sequencing. Bioinformatics 25(4):429

    Article  PubMed  CAS  Google Scholar 

  • Benetti R, Gonzalo S et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15(9):998

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I et al (2003) GenBank. Nucleic Acids Res 31(1):23–27

    Article  PubMed  CAS  Google Scholar 

  • Betel D, M Wilson et al (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue): D149–D153

    Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Wuyts J et al (2004) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20(17):2911–2917

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Wallis JW et al (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6(9):677–681

    Article  PubMed  CAS  Google Scholar 

  • Church GM, Kieffer-Higgins S (1988) Multiplex DNA sequencing. Science 240(4849):185–188

    Article  PubMed  CAS  Google Scholar 

  • Diguistini S, Liao NY et al (2009) De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biol 10(9):R94

    Article  PubMed  Google Scholar 

  • Edwards CA, Ferguson-Smith AC (2007) Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 19(3):281–289

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L et al (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8(3):175–185

    PubMed  CAS  Google Scholar 

  • Friedlander MR, Chen W et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415

    Article  PubMed  Google Scholar 

  • Fullwood MJ, Ruan Y (2009) ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem 107(1):30–39

    Article  PubMed  CAS  Google Scholar 

  • Ge YC, Dudoit S et al (2003) Resampling-based multiple testing for microarray data analysis. Test 12(1):1–77

    Article  Google Scholar 

  • Gordon D, Abajian C et al (1998) Consed: a graphical tool for sequence finishing. Genome Res 8(3):195–202

    PubMed  CAS  Google Scholar 

  • Grandjean V, Gounon P et al (2009) The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136(21):3647–3655

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue): D154–D158

    Google Scholar 

  • Grimes SR Jr, van Wert J et al (1997) Regulation of transcription of the testis-specific histone H1t gene by multiple promoter elements. Mol Biol Rep 24(3):175–184

    Article  PubMed  CAS  Google Scholar 

  • Guerrero-Bosagna CM, Skinner MK (2009) Epigenetic transgenerational effects of endocrine disruptors on male reproduction. Semin Reprod Med 27(5):403–408

    Article  PubMed  CAS  Google Scholar 

  • Hackenberg M, Sturm M, et al (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37(Web Server issue): W68–W76

    Google Scholar 

  • Hammoud SS, Nix DA et al (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460(7254):473–478

    PubMed  CAS  Google Scholar 

  • Han L, Witmer PD et al (2007) DNA methylation regulates microRNA expression. Cancer Biol Ther 6(8):1284–1288

    PubMed  CAS  Google Scholar 

  • Han T, Manoharan AP et al (2009) 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 106(44):18674–18679

    Article  PubMed  CAS  Google Scholar 

  • He S, Liu C et al (2008) NONCODE v2.0: decoding the non-coding. Nucleic Acids Res 36(Database issue): D170–D172

    Google Scholar 

  • Honda BM, Dixon GH et al (1975) Sites of in vivo histone methylation in developing trout testis. J Biol Chem 250(22):8681–8685

    PubMed  CAS  Google Scholar 

  • Horner DS, Pavesi G et al (2010) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform 11(2):181–197

    Article  PubMed  CAS  Google Scholar 

  • Huang TH, Fan B et al (2007) MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinform 8:341

    Article  Google Scholar 

  • Hubbard TJ, Aken BL et al (2009) Ensembl 2009. Nucleic Acids Res 37(Database issue): D690–D697

    Google Scholar 

  • Huse SM, Huber JA et al (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8(7):R143

    Article  PubMed  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262

    Article  PubMed  CAS  Google Scholar 

  • Kall L, Storey JD et al (2009) QVALITY: non-parametric estimation of q-values and posterior error probabilities. Bioinformatics 25(7):964–966

    Article  PubMed  Google Scholar 

  • Kang SC, Lee BM (2005) DNA methylation of estrogen receptor alpha gene by phthalates. J Toxicol Environ Health A 68(23–24):1995–2003

    Article  PubMed  CAS  Google Scholar 

  • Kawai K, Nozaki T et al (2003) Aggressive behavior and serum testosterone concentration during the maturation process of male mice: the effects of fetal exposure to bisphenol A. Environ Health Perspect 111(2):175–178

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ, Sugnet CW et al (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  PubMed  CAS  Google Scholar 

  • Landgraf P, Rusu M et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    Article  PubMed  CAS  Google Scholar 

  • Langmead B, Trapnell C et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed  Google Scholar 

  • Lee ML, Whitmore GA (2002) Power and sample size for DNA microarray studies. Stat Med 21(23):3543–3570

    Article  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  PubMed  CAS  Google Scholar 

  • Li H, Ruan J et al (2008a) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858

    Article  PubMed  CAS  Google Scholar 

  • Li R, Li Y et al (2008b) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714

    Article  PubMed  CAS  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    Article  PubMed  CAS  Google Scholar 

  • Lindner H, Sarg B et al (2003) Capillary electrophoresis analysis of histones, histone variants, and their post-translationally modified forms: a review. J Capill Electrophor Microchip Technol 8(3–4):59–67

    PubMed  CAS  Google Scholar 

  • Lister R, Pelizzola M et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    Article  PubMed  CAS  Google Scholar 

  • Lu R, Markowetz F et al (2009) Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462(7271):358–362

    Article  PubMed  CAS  Google Scholar 

  • Marmorstein R (2001) Protein modules that manipulate histone tails for chromatin regulation. Nat Rev Mol Cell Biol 2(6):422–432

    Article  PubMed  CAS  Google Scholar 

  • Martins RP, Krawetz SA (2005) Towards understanding the epigenetics of transcription by chromatin structure and the nuclear matrix. Gene Ther Mol Biol 9:229–246

    PubMed  Google Scholar 

  • Martorell MR, Navarro J et al (1997) Hypomethylation of human sperm pronuclear chromosomes. Cytogenet Cell Genet 76(3–4):123–127

    Article  PubMed  CAS  Google Scholar 

  • Mersfelder EL, Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 34(9):2653–2662

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Stenzel U et al (2007) Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res 35(15):e97

    Article  PubMed  Google Scholar 

  • Miranda KC, Huynh T et al (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    Article  PubMed  CAS  Google Scholar 

  • Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457(7228):413–420

    Article  PubMed  CAS  Google Scholar 

  • Morison IM, Paton CJ et al (2001) The imprinted gene and parent-of-origin effect database. Nucleic Acids Res 29(1):275–276

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  PubMed  CAS  Google Scholar 

  • Mylchreest E, Sar M et al (1999) Disruption of androgen-regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol Appl Pharmacol 156(2):81–95

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH (2009) Transgenerational genetic effects on phenotypic variation and disease risk. Hum Mol Genet 18(R2):R202–R210

    Article  PubMed  CAS  Google Scholar 

  • Osier MV, Zhao H et al (2004) Handling multiple testing while interpreting microarrays with the Gene Ontology Database. BMC Bioinform 5:124

    Article  Google Scholar 

  • Ostermeier GC, Dix DJ et al (2002a) A bioinformatic strategy to rapidly characterize cDNA libraries. Bioinformatics 18(7):949–952

    Article  PubMed  CAS  Google Scholar 

  • Ostermeier GC, Dix DJ et al (2002b) Spermatozoal RNA profiles of normal fertile men. Lancet 360(9335):772–777

    Article  PubMed  CAS  Google Scholar 

  • Ostermeier GC, Goodrich RJ et al (2005) A suite of novel human spermatozoal RNAs. J Androl 26(1):70–74

    PubMed  CAS  Google Scholar 

  • Page GP, Edwards JW et al (2006) The PowerAtlas: a power and sample size atlas for microarray experimental design and research. BMC Bioinform 7:84

    Article  Google Scholar 

  • Pang KC, Stephen S et al (2005) RNAdb–a comprehensive mammalian noncoding RNA database. Nucleic Acids Res 33(Database issue): D125–D130

    Google Scholar 

  • Rice P, Longden I et al (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16(6):276–277

    Article  PubMed  CAS  Google Scholar 

  • Rozowsky J, Euskirchen G et al (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27(1):66–75

    Article  PubMed  CAS  Google Scholar 

  • Rumble SM, Lacroute P et al (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5(5):e1000386

    Article  PubMed  Google Scholar 

  • Sai Lakshmi S, Agrawal S (2008) piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res 36(Database issue): D173–D177

    Google Scholar 

  • Schatz MC (2009) CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics 25(11):1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Schones DE, Zhao K (2008) Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 9(3):179–191

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Porreca GJ et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309(5741):1728–1732

    Article  PubMed  CAS  Google Scholar 

  • Simpson JT, Wong K et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Singh GB, Krawetz SA (1995) DNAView: a quality assessment tool for the visualization of large sequenced regions. Comput Appl Biosci 11(3):317–319

    PubMed  Google Scholar 

  • Sinkkonen L, Hugenschmidt T et al (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15(3):259–267

    Article  PubMed  CAS  Google Scholar 

  • Smith AD, Chung WY et al (2009) Updates to the RMAP short-read mapping software. Bioinformatics 25(21):2841–2842

    Article  PubMed  CAS  Google Scholar 

  • Sullivan S, Sink DW et al (2002) The histone database. Nucleic Acids Res 30(1):341–342

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Kaplan CD et al (2009) Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle 8(15):2332–2338

    Article  PubMed  CAS  Google Scholar 

  • Takai D, Jones PA (2003) The CpG island searcher: a new WWW resource. In Silico Biol 3(3):235–240

    PubMed  CAS  Google Scholar 

  • Thomas LB (2009). Highly scalable short read alignment with the Burrows–Wheeler transform and cloud computing. Computer Science, University of Maryland, MD

    Google Scholar 

  • Valeri N, Vannini I et al (2009) Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation. Mamm Genome 20(9–10):573–580

    Article  PubMed  CAS  Google Scholar 

  • van Roijen HJ, Ooms MP et al (1998) Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum Reprod 13(6):1559–1566

    Article  PubMed  Google Scholar 

  • Varshney RK, Nayak SN et al (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Waddington CH (1940) Organisers and genes. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang H, Veldink JH et al (2009) Markov Models for inferring copy number variations from genotype data on Illumina platforms. Hum Hered 68(1):1–22

    Article  PubMed  Google Scholar 

  • Wang Y, Jorda M et al (2006) Functional CpG methylation system in a social insect. Science 314(5799):645–647

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48(3):249–257

    Article  PubMed  CAS  Google Scholar 

  • Williamson LL, Borlee BR et al (2005) Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol 71(10):6335–6344

    Article  PubMed  CAS  Google Scholar 

  • Wolfsberg TG (2007) “Using the NCBI Map Viewer to browse genomic sequence data.” Curr Protoc Bioinformatics Chapter 1 : Unit 1 5

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Liu T et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    Article  PubMed  Google Scholar 

  • Zhang Y, Lv J et al (2010) HHMD: the human histone modification database. Nucleic Acids Res 38 (Database issue): D149–D154

    Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the NIH grant HD36512, the Presidential Research Enhancement Program in Computational Biology and the Charlotte B. Failing Professorship to SAK. We gratefully acknowledge the use of the UCSC genome browser (http://genome.ucsc.edu/) and the Ensembl genome browser (http://www.ensembl.org) that were used in the creation of some of the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Krawetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Platts, A.E., Lalancette, C., Krawetz, S.A. (2011). Epigenetics in Male Reproduction: A Practical Introduction to the Informatics of Next Generation Sequencing. In: Rousseaux, S., Khochbin, S. (eds) Epigenetics and Human Reproduction. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14773-9_10

Download citation

Publish with us

Policies and ethics