Skip to main content

Parallelism, Holonomy, Homotopy and (Co)homology

  • Chapter
  • First Online:
Book cover Topology and Geometry for Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 822))

  • 5146 Accesses

Abstract

This chapter is devoted to most topical and important applications of topology and geometry in physics: gauge field theory and the physics of geometric phases which vastly emerges from the notion of the Aharonov–Bohm phase and later more generally from the notion of a Berry phase and even penetrates chemistry and nuclear chemistry. The central notion in these applications is holonomy. Since holonomy is based on lifts of integral curves of tangent vector fields on the base manifold M of a bundle, and maximal integral curves may end in singular points of tangent vector fields, non-singularity of tangent vector fields plays its role. Non-zero tangent vector fields can be expressed as sections of the ‘punctured tangent bundle’ on M. This is a subject of the interrelation of holonomy with homotopy of fiber bundles, an important issue by itself. Therefore the chapter starts with two sections on homotopy of fiber bundles before gauge fields and finally geometric phases in general are considered. All these issues fall also into the vast realm of characteristic classes and index theory. In a first reading the first two sections may be skipped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A collection of most of the relevant original papers on the subject is gathered in the volume [1].

  2. 2.

    Phys. Rev. Lett. 62, 2747–2750 (1989).

  3. 3.

    Phys. Rev. B 27, 6083–6087 (1983).

  4. 4.

    See for instance D. Cohen, Phys. Rev. B 68, 155303-1–15 (2003).

References

  1. Shapere, A., Wilczek, F. (eds.): Geometric Phases in Physics. World Scientific, Singapore (1989)

    Google Scholar 

  2. Bohm, A., et al.: The Geometric Phase in Quantum Physics. Springer, Berlin (2003)

    MATH  Google Scholar 

  3. Schwarz, A.S.: Topology for Physicists. Springer-Verlag, Berlin (1994)

    Book  MATH  Google Scholar 

  4. t’Hooft, G. (ed.): 50 Years of Yang-Mills Theory. World Scientific, Singapore (2005)

    Google Scholar 

  5. Milton, K.A.: Theoretical and experimental status of magnetic monopoles. Rep. Prog. Phys. 69, 1637–1711 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. Nakahara, M.: Geometry, Topology and Physics. IOP Publishing, Bristol (1990)

    Book  MATH  Google Scholar 

  7. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  8. Resta, R.: Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994)

    Article  ADS  Google Scholar 

  9. Resta, R.: Manifestations of Berry’s phase in molecules and condensed matter. J. Phys.: Condens. Matter 12, R107–R143 (2000)

    Article  ADS  Google Scholar 

  10. Resta, R., Vanderbilt, D.: In: Ahn, C.H., Rabe, K.M., Triscone, J.M. (eds.). Physics of Ferroelectrics: a Modern Perspective, pp. 31–68. Springer, Berlin (2007)

    Google Scholar 

  11. Eschrig, H.: The Fundamentals of Density Functional Theory. p. 226, Edition am Gutenbergplatz, Leipzig, (2003)

    MATH  Google Scholar 

  12. Peierls, R.: Surprises in Theoretical Physics. Princeton University Press, Princeton (1979)

    Google Scholar 

  13. Qi, X.-L., Hughes, T.L., Zhang, S.-C.: Topological field theory of timereversal invariant insulators. Phys. Rev. B 78, 195424–1-43 (2008)

    Google Scholar 

  14. Ceresoli, D., Thonhauser, T., Vanderbilt, D., Resta, R.: Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals. Phys. Rev. B 74, 024408–1–13 (2006)

    Google Scholar 

  15. Hasan, M.Z., Kane, C.L.: Topological Insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eschrig, H. (2010). Parallelism, Holonomy, Homotopy and (Co)homology. In: Topology and Geometry for Physics. Lecture Notes in Physics, vol 822. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14700-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14700-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14699-2

  • Online ISBN: 978-3-642-14700-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics